CONTRIBUTIONS

from

BOYCE THOMPSON INSTITUTE

INDEX VOLUMES 1-10 1925-1939

> COMPILED BY ZELIAETTE TROY

Published Quarterly at Menasha, Wisconsin, by BOYCE THOMPSON INSTITUTE FOR PLANT RESEARCH, INC. Editorial Office: Yonkers, New York

INDEX

VOLUMES 1-10

1925-1939

Ambrosia trifida: primary dormancy, after-

Anthocyanin: carbon dioxide effects, 6:403

Anthraceneacetic acid: effects on plants,

Antirrhinum: aspirin effects on flowers,

Aphid: transmits dahlia mosaic, 5:235

7:209

Abscission: ethylene and illuminating gas

Alternating temperature: See Temperature

Amaryllis hybrid: pollen germination, stor-

effects on seeds, See Germination of

effects

age, 8:141

effects on roses, 3:459 ripening, and development of secondgrowth substances effects on flowers, ary dormancy in embryos, 2:285 10:481 Ammonium dithiocarbamate: effects on dor-Abutilon mosaic: precipitin reaction with mant potato tubers, 5:29 tobacco mosaic, 3:532 preparation, 5:31 Acenaphthyl-(5)-acetic acid: effects on Ampholytes: factors influencing pH equiplants, 7:200 librium of plant tissue, 1:278 Acetaldehyde: ethylene chlorohydrin effects Amylase in dormant lilac tissues: ethylene on formation in potatoes, 2:437 chlorohydrin effects, 4:513 Acetic acid: toxicity for cicada, 7:424 Amylase in dormant potato tubers: acidity Acetylene effects: epinasty of leaves, 4:194 effects, 2:435 on centipedes, 7:147 chemicals effects, 2:435, 4:53 on insects, 7:147 ethylene chlorohydrin effects, 2:435, on plants, 5:351, 7:147, 231 4:53, 5:441 on roots, 5:351 potassium chloride effects, 4:53 Acidity: See Hydrogen ion concentration potassium cyanide effects, 3:207, 4:53 Acids, Fatty: contact insecticides, 7:63 potassium nitrate effects, 4:53 After-ripening of seeds: 1:82; Ambrosia tripotassium thiocyanate effects, 4:53, 5: fida, 2:285; apple, 6:205; Arctostaphylos Uva-ursi, 9:71; bayberry, sodium thiocyanate effects, 4:53 4:19; Benzoin aestivale, 7:411; birch, thiocyanates effects, 3:277 2:47; cocklebur, 2:304; Cotoneaster, Amylase in saliva: thiocyanates effects, 6:323; Crataegus, 9:409; gentian, 3:287 9:91; grape, 9:7; Halesia carolina, Anaesthetic effects on centipedes: of acety-4:27; hawthorn, 6:205; parsnip, lene, butylene, carbon dioxide, car-2:115; peach, 6:205; Rhodotypos kerbon monoxide, ethylene, propylene, rioides, 5:143, 161; Rosaceae, 3:385; Sorbus aucuparia, 3:413; Symphori-Anaesthetic effects on insects: of acetylene, carpos racemosus, 6:91; Tilia, 6:69; butylene, carbon dioxide, carbon Viburnum, 9:79; wild plum, 4:39 monoxide, ethylene, propylene, 7:147 See also Dormancy in seeds Anaesthetic effects on plants of: acetylene, Agave murpheyi: a new species, 7:83 7:147, 231 Age of plants: effects on chemical composibutylene, 7:147 tion, 2:467 carbon dioxide, 7:147 Alfalfa: sulphur dioxide effects, 9:179, 10: carbon monoxide, 5:195, 7:147, 231 ethylene, 7:147, 231 Alkyl halides: effects on respiration in pogrowth substances in vapor form, 10:363 tato tubers, 6:279, 7:1 growth substances on mimosa, 7:222 Alsophila pometaria: control by banding, propylene, 7:147, 231 wind dispersal, 7:365

Aphis rumicis: pyrethrum toxicity, 4:107, 5:115

thiocyanogen compounds toxicity, 6: 269, 7:29, 497

Apical dominance: growth substances effects, 7:349, 447

oxygen effects, 10:342

thiourea effects, 1:154

Apple: See Pyrus malus

Aquatic plants: Rhizoctonia disease, 1:383 Arbutus, Trailing: propagation, 8:81

Arctostaphylos Uva-ursi: after-ripening, dormancy, germination, seedling production, 0:71

Arsenic residue on sprayed apples, 3:363

ARTHUR, JOHN M. Red pigment production in apples by means of artificial light sources, 4:1

ARTHUR, JOHN M., JOHN D. GUTHRIE, and JOHN M. NEWELL. Some effects of artificial climates on the growth and chemical composition of plants, 2:445

ARTHUR, JOHN M., and EDWARD K. HAR-VILL. Forcing flower buds in gardenia with low temperature and light, 8:

Heating and lighting greenhouses with intermittent light, 10:15

Plant growth under continuous illumination from sodium vapor lamps supplemented by mercury arc lamps, 8:433

ARTHUR, JOHN M., and JOHN M. NEWELL.

The killing of plant tissue and the inactivation of tobacco mosaic virus by
ultra-violet radiation, 2:143

Arthur, John M., and L. C. Porter. A new type of insulated greenhouse heated and lighted by Mazda lamps, 7:131

Arthur, John M., and W. D. Stewart. Relative growth and dry weight production of plant tissue under Mazda, neon, sodium, and mercury vapor lamps, 7:119

Transpiration of tobacco plants in relation to radiant energy in the visible and infra-red, 5:483

ARTHUR, JOHN M.: See also STEWART, W. D. . . . ; WAY, KATHARINE . . . Artichoke: light effects, 8:311

photoperiodism effects on tuberization, 10:1

Ascocarp: Coccomyces hiemalis, 6:339

Ascorbic acid: carbon dioxide effects on asparagus, 9:137

decreases in stored potato tubers, 9:17 determination, extraction, 9:273

inactivates tobacco mosaic virus, 8:335,

increased in old potato tubers by cutting into thin slices, 9:17

production in potatoes treated with ethylene chlorohydrin, 9:17

Ashing of plant material: improved method, 8:199

Asparagin: in Rosa, 1:537

Asparagus officinalis: carbon dioxide effects on ascorbic acid content, respiration, pl1, 9:137

freezing point depressions in shoots, 3:483

Aspirin: effects on lasting qualities of cut flowers, 2:197

Aster yellows: 1:181, 3:85

Cicadula sexnotata as carrier, 1:181, 2:343, 3:39, 85

host range, 1:199, 3:85

immune plants, 1:181, 3:85

incubation period, 1:219, 236

influence on susceptibility to other diseases, 1:210

not same as celery yellows of California, 4:405; Eupatorium yellows, 3:105; false blossom of cranberry, 1:214; stunt disease of dahlia, 1:212; witches' broom in potato, 3:109

not transmitted through seeds, 1:216 over-wintering, 1:217

some of the insects incapable of transmitting, 1:185

symptoms, 1:182

ultra-violet photography, 1:407

Astringency: carbon dioxide storage effects on fruits and vegetables, 3:219

Atomic weight of elements: as related to toxicity of fungicides, 6:479

Aucuba mosaic: ultra-violet photography, 1:407

virus concentration measured by lesions produced, 7:37

Auxins: See Growth substances

Avena: cellulose in coleoptile epidermis, 10:127

growth substances effects on coleoptile, 10:481

Avena sativa: yarovization, 8:237

Back Bay, Virginia: ecological and physiological studies on certain aquatic angiosperms in, 4:425

Backus, Myron P. Initiation of the ascocarp and associated phenomena in Coccomyces hiemalis, 6:339

BACON, RAYMOND F. Address at dedication of Institute, 1:46

Bacteria: disintegrates cotton cell membranes, 10:267

ultra-violet photography, 1:412

Ball, Elmer Darwin. Address at dedication of Institute, 1:52

Barrows, Florence L. Propagation of Epigaea repens L. I. Cuttings and seeds, 8:81

Propagation of *Lycopodium*. I. Spores, cuttings, and bulbils, 7:267

Propagation of Lycopodium. II. Endophytic fungus in gametophyte and sporophyte, 7:295

Propagation of Lycopodium. III. Spore germination, 8:233

Barton, Lela V. Dormancy in *Tilia* seeds, **6:**69

Effect of storage on the vitality of *Del*phinium seeds, 4:141

A further report on the storage of vegetable seeds, 10:205

Germination and seedling production in *Lilium* sp., **8:**297

Germination of bayberry seeds, 4:19
Germination of delphinium seeds, 7:405
Germination of some desert seeds, 8:7
Hastening the germination of some coniferous seeds, 2:315

Seedling production in Carya ovata (Mill.) K. Koch, Juglans cinerea L., and Juglans nigra L., 8:1

Seedling production of tree peony, 5:451 Storage of elm seeds, 10:221

Storage of some coniferous seeds, 7:379 Storage of some flower seeds, 10:399 Storage of vegetable seeds, 7:323

BARTON, LELA V.: See also CROCKER, WIL-

LIAM . . . ; GIERSBACH, JOHANNA . . . ; SCHROEDER, ELTORA M. . . .

Bayberry: germination of seeds, 4:19

BEALE, HELEN PURDY. A device for uniform lighting in precipitin tests, 6:105

Possible relationship of Stanley's crystalline tobacco-mosaic-virus material to intracellular inclusions present in virus infected cells, 8:333

Relation of Stanley's crystalline tobacco-virus protein to intracellular crystalline deposits, 8:413

The serum reactions as an aid in the study of filterable viruses of plants, 6:407

Specificity of the precipitin reaction in tobacco mosaic disease, 3:529

Beale, Helen Purdy: See also Purdy, Helen A.; Youden, W. J. . . .

Bean mosaic: comparison with tobacco mosaic on bean varieties, 2:556

Bearberry: after-ripening, dormancy, germination, seedling production, 9:71

Benzoic acid: effects on plants, 7:95

Benzoin aestivale: after-ripening, dormancy, germination of seed, 7:411

BERG, ROBERT O.: See ZIMMERMAN, P. W., and ROBERT O. BERG

Betula populifolia seeds: germination, 1:272, 2:47

vitality, 2:47

Birch, Gray: See Betula populifolia

Black grain thrips: fumigation with naphthalene, 2:519

BLACKMAN, VERNON II. Botanical greetings from Europe. (Address at dedication of Institute), 1:36

Blasting of flower spike: gladiolus, 3:192 Blindness: gladiolus, 2:532, 3:192

BLOCH, ROBERT. Anatomical changes in Tradescantia fluminensis Vell. after treatment with growth substances, 9:439

Boneset: See Eupatorium

Bordeaux mixture: comparison with other copper fungicides, 9:249

composition affects solubility of copper, 0:149

fungous spores solubilize copper, 8:151 weathering increases percentage of copper, solubility of copper, 9:149

BOURN, W. S. Ecological and physiological

potato tubers, 8:41

studies on certain aquatic angio-

```
Butylene effects: epinasty of leaves, 4:194
      sperms, 4:425
                                                 on centipedes, insects, plants, 7:147
   Sea-water tolerance of Ruppia maritima
      L., 7:249
   Sea-water tolerance of Vallisneria spi-
                                              Calcium: deficiency effects on nitrate reduc-
      ralis L. and Potamogeton foliosus Raf.,
                                                    tion by plants, 4:125
                                                 effects of radiation on plants, 9:105
BOURN, W. S., and BERNICE JENKINS.
                                                 spectrographic determination in plant
      Rhizoctonia disease on certain aquatic
                                                    ashes, 7:103
                                              Calcium carbonate: elimination in plant
      plants, 1:383
Boyce Thompson institute for plant re-
                                                    analysis, 5:103
      search: administration, 1:9
                                              Calcium caseinate: effects on toxicity of
                                                     nicotine to Aphis rumicis, 3:8
   building, 1:12; picture (1924),
                                        I:2
                                              Calcium hypochlorite: control of Penicul-
   charter, 1:20
   constant condition light and dark rooms,
                                                    lium rot in lilies, 8:361
                                              Callus formation: 1:457
      1:16
   dedication addresses, 1:25
                                                 apple cuttings and grafts, 2:351
   directors (1924), 1:7, 22
                                                 See also Rooting
   endowment, 1:9
                                              Cankerworm: control by banding, wind dis-
                                                     persal, 7:365
   fellowships, 1:10, 34
   gantry crane, 1:17; picture, 1:23, 27
                                              Capillary glass electrode, 3:347
                                              Carbohydrate-nitrogen ratio: effects of arti-
   greenhouses, 1:14, 17
   laboratories and equipment, 1:12, 32
                                                     ficial climates on plant composition,
   library, 1:18
   mechanical equipment, 1:14
                                                 effects of seed composition on growth of
                                                    seedlings, 2:1, 251
   officers, 1:7, 22
   organization, 1:9, 32
                                              Carbohydrates: accumulated in Dahlia in
                                                    short day, 1:475, 477
   photographic equipment, 1:20
                                                 changes in leaves during the night,
   publications, 1:12
   purposes, 1:9
   spectral-glass greenhouses, 1:17; picture,
                                                 effects of artificial climates on plant
                                                    composition, 2:445
   staff (1924), 1:9
                                                 effects of seed composition on growth of
Brassica: sulphur dioxide effects, 9:179
                                                    seedlings, 1:115, 2:1, 251, 274
BRIERLEY, PHILIP, Studies on mosaic and
                                                 in holly cuttings, 2:212
      related diseases of Dahlia, 5:235
                                                 in leaves before frost, 5:297
Browning of plant juices and tissues: thio-
                                              Carbon bisulphide: effects on dormant po-
                                                    tato tubers, 1:63
      urea prevents, 7:55
                                              Carbon dioxide: supply for plants furnished
Bryophyllum: effects of ethylene chloro-
      hydrin and light on citric acid con-
                                                    by fowls, 10:15
      tent, 8:283
                                              Carbon dioxide effects on: acidity of aspara-
Buckwheat: sulphur dioxide injury, 10:155
                                                    gus tissue, 9:137
                                                 acidity of plant tissue, 5:403, 6:403
Bud inhibition: See Growth inhibition
Buffers: effects of composition and concen-
                                                 aquatic angiosperms, 4:459
      tration on growth substances activ-
                                                 ascorbic acid content of asparagus tissue,
      ity, 9:493
                                                 callusing of apple cuttings and grafts,
   factors influencing pH equilibrium of
                                                    2:378, 385
      plant tissue, 1:278
Butternut: seedling production, 8:1
                                                 centipedes, 7:147
Butyl bromide: effects on glutathione pro-
                                                 chemical constitution of potato tubers,
      duction in potatoes, 9:25
Butyl halides: effects on respiratory rate of
                                                 chloroplast pigments, 2:228
```

```
dormancy, See Dormancy . . .
   flower color, 6:403
   fruits, 3:210
   fungal hyphae, 6:305
   germination, See Germination of seeds:
      carbon dioxide effects
   gladiolus corms treated with growth sub-
      stances, 10:5
                                                     4:405
   growth of plants, 2:445
   growth of seedlings, 2:1, 251, 274; with
      or without nitrate supply, 1:115
   insects, 7:147
   Neurospora sitophila, 5:95
   plants in storage, 5:371, 403
   plants under various light conditions,
      1:123
   prolonging life of cut flowers, 2:535
   respiration of plant tissue, 5:371, 403,
       471, 7:113, 147, 9:137
   vegetables, 3:210
Carbon monoxide effects on: centipedes,
      7:147
   epinasty of leaves, 4:194
   insects, 7:147
   plants, 5:195, 7:147, 231
   roots, 5:1
CARLSON, MARGERY C. Comparative ana-
      tomical studies of Dorothy Perkins
      and American Pillar roses. I. Anatomy
      of canes. II. Origin and development
      of adventitious roots in cuttings,
   Microchemical studies of rooting and
      non-rooting rose cuttings, 1:529
   Origin of adventitious roots in Coleus
      cuttings, 2:30
Carotin: environment effects, 2:220
   preparation, 2:226
                                                     2:222
Carya ovata: seedling production, 8:1
Catalase: in Ambrosia trifida embryos,
      2:285
   carbon dioxide effects on potato tubers,
   changes in relation to respiratory rate
      of potato tubers, 8:41
   chemicals effects on dormant potato
      tubers, 2:420, 427; juice, 3:499
```

ethylene chlorohydrin effects on dormant gladiolus corms, 4:131; dor-

Catalase in seeds: cocklebur, 2:310, 7:477;

tato tubers, 2:417

mant lilac tissue, 4:513; dormant po-

```
Nelumbo nucifera, 1:295; Rhodotypos
      kerrioides, 5:143, 161; Sorbus aucu-
       paria, 3:413; Symphoricarpos race-
       mosus, 6:91; Tilia, 6:69
Cecidomyid larvae infest lilies, 10:277
Celery yellows of California: not identical
       with aster yellows of New York,
Cellulose: behavior in cuprammonium hy-
      droxide, 10:57, 71
   behavior in pure bacteria culture, 10:267
   cataphoretic behavior in electrolytically
       prepared cuprammonium hydroxide,
   formation of membranes, 6:189, 8:401
   in Avena coleoptile epidermis, 10:127
   orientation, 9:239
   separation of particles by hydrochloric
      acid. 6:300
   X-ray diffraction analysis, 8:380
   X-ray diffraction patterns, 6:315
Chemicals effects: See Dormancy . . . ;
      Growth substances; Salts; name of
      chemical
Chemicals, Volatile: produce epinasty, 10:
Chi-square test: precision in spore germina-
      tion tests, 4:233
   statistical analysis of seed germination
      data, 4:219
Chloracetal: effects on dormant potato
      tubers, 7:178
Chlorinated water effects on: goldfish, 6:46
      plants, 6:30
Chlorophyll: determination by stable colori-
      metric standard, 1:339
   determination of chlorophyll a and b,
   environment effects, 2:220
   light effects on concentration, 2:184, 189
   loss following treatment with growth
      substances, 9:316, 472
Chloroplast pigments: determinations, 2:224
   environment effects, 2:220
   temperature effects, 2:228
   tomato mosaic effects, 2:244
Chrysanthemum: indolebutyric acid pro-
      duces roots, 10:461
Chrysanthemum monocarboxylic acid: prep-
```

aration of esters, 10:143

toxicity of various esters, 10:143

Cicada: nerve lesions after paralysis by killer-wasp, 7:421

Cicadula sexnotata: ability of individuals to transmit aster yellows, 1:226

examination for aster yellows virus, 2:343

hosts, 1:181, 3:87, 120

life history, 1:190

methods for obtaining virus-free colonies, 1:197

morphological and cytological studies of salivary glands, alimentary tract, 3:39

over-wintering, 1:193

retention of aster yellows virus, 1:225

transmits aster yellows, 1:181, 2:343, 3:39, 85

transmits celery yellows of California from aster, celery, and carrot to aster, 4:405

unable to transmit aster yellows to some plants, 1:200, 3:105

unable to transmit curly top of beets, 1:200

unable to transmit peach yellows to aster, 1:211; to peach, 1:211, 3:111

Cinnamic acid: effects on plants, 7:95, 349 Cinnamic acid, Irradiated: applied as vapor, in water solution or lanolin preparation produces epinasty in plants, 10:197

Cissus: anatomical study of roots produced by indolebutyric acid, 8:493

Citric acid: changes in relation to respiratory rate of potato tubers, 8:41

effects on plants, 7:95

ethylene chlorohydrin effects, on content in *Bryophyllum* leaves, **8:2**83

isolated from potato tubers, 8:295

light effects on content in Bryophyllum leaves, 8:283

metabolism in dormant potato tubers treated with ethylene chlorohydrin, 6:247

CLARK, GEORGE L.: See FARR, WANDA K., and GEORGE L. CLARK

Coccomyces hiemalis: ascocarp, 6:339

Cocklebur: development of dormancy in seeds, 2:304

dormancy, germination of seeds, 7:477

Coleus blumei: origin of adventitious roots in cuttings, 2:39

Color: See Pigments

Composts: 8:263

improved by addition of peats, 4:257

COMPTON, JACK. On the behavior of plant fibers dispersed in cuprammonium hydroxide solution, 10:57

COMPTON, JACK: See also HAVER, FORRETS E., JR. . . .

Conductivity of dormant potato tissue: carbon dioxide effects, 7:113

chemicals effects, 5:83

Conidia: See Fungous spores

Conifers: germination of seeds, 2:315, 7:379 storage of seeds, 7:379

temperature effects on seeds, 7:379 vitality test, 9:339

CONNARD, MARY II., and P. W. ZIMMER-MAN. The origin of adventitious roots in cuttings of *Portulaca oleracea* L., 3:337

CONNARD, MARY H.: See also ZIMMERMAN, P. W. . . .

Contractile roots: morphology, of gladiolus, 3:173

COOLIDGE, CALVIN. Message at dedication of Institute, 1:49

Copper fungicides: comparison, 9:249

See also Bordeaux mixture

Copper sulphate: toxicity surface, 5:173
Cordylophora lacustris: on certain aquatic
angiosperms, 4:438

Correlation: thiourea effects on bud inhibition and apical dominance of potato, 1:154

Cotoneaster: after-ripening, dormancy, germination of seeds, 6:323

Cotton: See Gossypium hirsutum

Cotyledon growth: light effects, 2:270 seed composition effects, 2:270

COULTER, JOHN M. Address at dedication of Institute, 1:25

Cranberry: cranberry false blossom disease and its insect vector, 3:59

Cranberry bogs: insect survey, 3:64

Cranberry false blossom: See False blossom of cranberry

Crataegus: after-ripening, dormancy, germination of seeds, 9:409

vitality test, 9:339

Crataegus punctata: after-ripening, dormancy, dwarfing, germination of seeds, 6:205

- CROCKER, WILLIAM. Aims of Boyce Thompson institute for plant research.
 (Address at dedication of Institute),
 1:28
- CROCKER, WILLIAM, and LELA V. BARTON.
 After-ripening, germination, and
 storage of certain rosaceous seeds,
 3:385
- CROCKER, WILLIAM, A. E. HITCHCOCK, and P. W. ZIMMERMAN. Similarities in the effects of ethylene and the plant auxins, 7:231
- CROCKER, WILLIAM, P. W. ZIMMERMAN, and A. E. HITCHCOCK. Ethylene-induced epinasty of leaves and the relation of gravity to it, 4:177
- Crocker, William: See also Giersbach, Johanna...; Hitchcock, A. E. ...; Setterstrom, Carl...; Zimmerman, P. W....
- Cucumber mosaic: virus concentration measured by lesions produced, 7:37
- Curly top of beets: not transmissible by Cicadula sexnotata, or Eutettix tenellus, 1:200
- Currituck Sound, North Carolina: ecological and physiological studies on certain aquatic angiosperms in, 1:425

Cut flowers: See Flowers

Cuttings: See Callus formation; Rooting Cuttings, Woody: rooted with growth substances, 8:63, 9:465

Cyclamen mite: See Tarsonemus pallidus Cysteine: potato juice effects on oxidation, 2:558

Dahlia: root formation and flowering of cuttings when subjected to different day lengths, 1:467

Dahlia mosaic: 5:235

Myzus persicae transmits, 5:235

Dahlia ring spot, 5:276

DAVIS, W. E. The development of dormancy in seeds of cocklebur (*Xanthium*), 2:304

Primary dormancy, after-ripening, and the development of secondary dormancy in embryos of Ambrosia trifida, 2:285

Day length effects: See Photoperiodism
Delphinium: germination of seeds, 7:405
storage effects on seeds, 4:141

- DENNY, F. E. Bases for calculations in measuring changes in leaves during the night, 5:181
 - Changes in leaves during the night, 4:05 Changes in leaves during the period preceding frost, 5:297
 - Chemical changes induced in potato tubers by treatments that break the rest period, 2:131
 - Combining treatments for disinfecting potato tubers with treatments for breaking dormancy, 9:307
 - Direct versus indirect effects upon potato amylase by chemicals which induce sprouting of dormant tubers, 4:53
 - Effect of ethylene chlorhydrin vapors upon the chemical composition of gladiolus corms, **5**:435
 - The effect of potassium cyanide upon the amylase activity of potato juice, 3:297
 - Effect of potassium thiocyanate and ethylene chlorhydrin upon amylase activity, 5:441
 - The effect of thiocyanates upon amylase activity. I. Potato amylase, 3:277
 - Effect of thiourea upon bud inhibition and apical dominance of potato, 1:154
 - Eliminating the use of calcium carbonate in preparing plant tissue for analysis, 5:103
 - Gravity-position of tomato stems and their production of the emanation causing leaf epinasty, 8:99
 - Hastening the sprouting of dormant potato tubers, 1:59
 - The importance of temperature in the use of chemicals for hastening the sprouting of dormant potato tubers, 11373
 - Improvements in methods of determining starch in plant tissues, 6:129
 - Leaf-epinasty tests with chemical vapors, 10:191
 - Leaf-epinasty tests with volatile products from seedlings, 9:431
 - Oxygen requirements of Neurospora sitophila for formation of perithecia and growth of mycelium, 5:95

Prolonging, then breaking, the rest period of gladiolus corms, 9:403

Respiration of gladiolus corms during prolonged dormancy, 10:453

A retrial of the ethylene chlorhydrin method for hastening the germination of freshly-harvested gladiolus corms, 8:473

Rôle of mother tuber in growth of potato plant, 2:77

Second report on the use of chemicals for hastening the sprouting of dormant potato tubers, 1:169

Shortening the rest period of *Gladiolus* by treatment with chemicals, 2:523 Spring-treatment of autumn-harvested gladiolus cormels, 8:351

Starch determination methods involving solubility in acids, 6:381

Storage temperatures for shortening the rest period of gladiolus corms, 8:137

Sucrose and starch changes in potatoes treated with chemicals that break the rest period, 2:580

Testing plant tissue for emanations causing leaf epinasty, 7:341

Thiourea prevents browning of plant tissues and juices, 7:55

The twin-leaf method of studying changes in leaves, 2:592

DENNY, F. E., and LAWRENCE P. MILLER. Effect of ethylene chlorhydrin vapors upon dormant lilac tissues, 4:513

Further experiments on shortening the rest period of potato tubers, 7:157

Hastening the germination of dormant gladiolus cormels with vapors of ethylene chlorhydrin, 6:31

Production of ethylene by plant tissue as indicated by the epinastic response of leaves, 7:97

Storage temperatures and chemical treatments for shortening the rest period of small corms and cormels of gladiolus, 7:257

Suggestions for standardizing the ethylene chlorhydrin treatment for inducing sprouting of recently-harvested intact potato tubers, **9:283**

DENNY, F. E., LAWRENCE P. MILLER, and JOHN D. GUTHRIE. Enzym activities of juices from potatoes treated with chemicals that break the rest period, 2:417

DENNY, F. E., and ERNEST N. STANTON.

Chemical treatments for shortening
the rest period of pot-grown woody
plants, 1:355

Localization of response of woody tissues to chemical treatments that break the rest period, 1:365

Denny, F. E., and W. J. YOUDEN. Acidification of unbuffered salt solutions by plant tissue, in relation to the question of tissue isoelectric points, 1:300

Denny, F. E.: See also Guthrie, John D. . . . ; Miller, Lawrence P. . . . ; Youden, W. J. . . .

Desert seeds: germination, 8:7

Dialysis: effects on potato juice, 2:424

Dichloroethyl ether, β , β' : fumigation, 10:47, 509

Dichloroethylene: effects on dormant potato tubers, 1:63

Dills, L. E., and H. Menusan, Jr. A study of some fatty acids and their soaps as contact insecticides, 7:63

Diurnal changes in leaves: 4:65

bases for calculations in measuring, 5:181

DOBROSCKY, IRENE D. Is the aster-yellows virus detectable in its insect vector?
2:343

Morphological and cytological studies on the salivary glands and alimentary tract of *Cicadula sexnotata* (Fallen), the carrier of aster yellows virus, 3:39

Studies on cranberry false blossom disease and its insect vector, 3:59

Dobroscky, Irene D.: See also Youden, W. J. . . .

Dominance: See Apical dominance

Dormancy in buds: light and low temperature effects on gardenia flower buds, 8:405

tree peony shoots, 5:451

Dormancy in gladiolus: chemicals effects, 2:523

ethyl alcohol effects on sulphydryl compound in corms, 5:341

ethylene effects on corms, 2:523

ethylene chlorohydrin effects on cormels, **6:31, 7:257, 8:351**

ethylene chlorohydrin effects on corms, 2:523, 4:131, 8:473, 9:403; chemical composition, 5:435; sulphydryl compounds, 5:341

ethylene chlorohydrin effects on sulphur reducing power of juice, 3:126

prolonged, 9:403

respiratory rate, 10:453

temperature effects on cormels, 8:351 temperature effects on corms, 2:523,

7:257, 8:137, 473, 9:403
Dormancy in insect eggs: shortening with low temperature, 8:167

Dormancy in lily bulbs: oxygen effects, 10:381

Dormancy in potato tubers: alkyl halides effects, 6:279

amylase, See Amylase in dormant potato

carbon dioxide effects, 5:371, 403, 471, 10:201

chemical changes in chemically treated tubers, 2:131, 580

chemicals effects, 1:50, 169, 8:41; on acidity, 3:490; on bud inhibition and apical dominance, 1:154; on conductivity of tissue, 5:83; on enzyme activities, 2:417, 3:409; on glutathione content, 5:331; on leaching of electrolytes from tissue, 5:83; on reducing properties, 3:490; on respiratory rate, 5:213, 7:1; on sucrose and starch changes, 2:580; on sugar content, 5:213, 8:41

chloracetal effects, 7:178

chlorthiocyanate effects, 7:178

enzyme activities in relation to sprouting, 2:439

epichlorhydrin effects, 7:178

ethyl alcohol effects on respiratory rate, 5:213, 6:123, 8:41

ethyl carbylamine effects, 9:265

ethylene effects, 1:63, 65, 174

ethylene bromohydrin effects on pl1 of juice, 3:333

ethylene chlorohydrin effects, 1:59, 169, 373, 2:131, 5:83, 6:247, 7:157, 8:121; amounts used, 7:157, 8:121; comparison of amounts absorbed and degree to which dormancy is overcome, 9:283; on acetaldehyde formation, 2:437; on acidity of juice, 3:321,

6:247; on amylase, 2:435, 4:53, 5:441; on ascorbic acid, 9:17; on disinfected tubers, 9:397; on enzyme activities, 2:417; on glutathione, 5:331, 9:17, 233; on phosphatase activity, 9:293; on reducing properties, 2:417, 9:17; on respiratory rate, 6:123, 8:41; on sulphur reducing power of juice, 3:126; on takadiastase, 5:441

ethylene thiocyanohydrin effects, **9:**265 formaldehyde effects on chemical treatments, **9:**397

furane effects, 7:178

growth substances effects, 9:265

halogenated aliphatic compounds effects, 7:1

hydrogen sulphide effects on respiration, 5:29

large scale treatments, 9:283

mesityl oxide effects, 7:178

methyl ester of naphthaleneacetic acid vapor effects, 10:325

oxygen effects, **5:**471, **10:**201, 339

paradichlorbenzene effects, 7:178

phenyl growth substances effects, 10:481 potassium thiocyanate effects, 5:83, 7:178

relation to increases in respiration, 5:213 sodium thiocyanate effects, 1:373, 2:131,

417, 580, **4:**53, **7:**157, **9:**397 sulphur compounds effects, **3:**309, 499,

5:29, 331 temperature effects, on chemically treated tubers, 1:373; on ethylene chlorohydrin treated tubers, 7:157;

on sodium thiocyanate treated tubers 7:157

thiocyanates effects, 1:59, 154, 169 thiourea effects, 1:59, 169, 2:417, 581, 5:83, 213, 9:307

Dormancy in roses: ethylene and illuminating gas effects, 3:459

Dormancy in seeds: 1:82; Ambrosia trifida,
2:285; apple, 6:205; Arctostaphylos
Uva-ursi, 9:71; Benzoin aestivale,
7:411; birch, 1:272, 2:47; cocklebur,
2:304, 7:477; Cotoneaster, 6:323;
Crataegus, 9:409; gentian, 9:91;
grape, 9:7; Italesia carolina, 4:27;
hawthorn, 6:205; lettuce, 8:25; lilies,
8:297; Myrica carolinensis, 4:19;

Nelumbo nucifera, 1:289, 295, 301; nuts, 8:1; parsnip, 2:115; peach, 6:205, 8:289; Ptelea, 8:355; Rhodotypos kerrioides, 5:143, 161; rock garden plants, 10:235; Rosaceae, 3:385; Sorbus aucuparia, 3:413; Symphoricarpos racemosus, 6:91; Tilia, 6:69; tree peony, 5:451; Viburnum, 9:79; wild plum, 4:39

carbon dioxide effects, on cocklebur, 7:477; on lettuce, 8:25; on Nelumbo nucifera, 1:289

causes, 2:300, 6: 91

chemical changes, in Rhodotypos kerrioides, 5:143; in Sorbus aucuparia, 3:413; in Symphoricarpos racemosus, 6:01

chemicals effects on Sorbus aucuparia, 3:413

ethylene chlorohydrin effects, 1:274 fungal invasion overcomes, 6:91, 103 gases effects on cocklebur, 1:100, 7:477 hydrogen ion concentration effects, on birch, 2:50; on Sorbus aucuparia, 3:413

oxygen effects, 1:100; on Ambrosia trifida embryos, 2:285; on birch, 2:50; on cocklebur, 2:311, 7:477; on lettuce 8:25; on Nelumbo nucifera, 1:289

seed coat effects, on cocklebur, 2:304
seed coat effects at high temperatures,
on Arctostaphylos Uva-ursi, 9:71; on
Cotoneaster, 6:323; on Crataegus,
9:400; on Halesia carolina, 4:27; on
lettuce, 8:35; on Symphoricarpos
racemosus, 6:91, 103; on T·lia, 6:69

storage effects on Ambrosia trifida embryos, 2:288

sulphuric acid effects, on Arctostaphylos Uva-ursi, 9:71; on birch, 1:274; on Cotoneaster, 6:323; on Crataegus, 9:409; on Symphoricarpos racemosus, 6:91; on Tilia, 6:69

temperature effects on Ambrosia trifida embryos, 2:285; on cocklebur, 2:304, 7:477; on lettuce, 8:35

water effects on Ambrosia trifida embryos, 2:289; on birch, 2:47; on cocklebur, 2:304, 7:477

Dormancy in seeds, Epicotyl: in lilies, 8:297; in tree peony, 5:451; in Viburnum, 9:79

Dormancy in seeds, Secondary: in Ambrosia trifida embryos, 2:285; in cocklebur, 2:304, 7:477; in Sorbus aucuparia, 3:413

Dormancy in woody plants: chemicals effects, 1:355

ethylene chlorohydrin effects, 1:355, 4:513

localization of response to chemical treatments, 1:365

sulphur compounds effects, **5**:52, 71 "Dry Ice": See Carbon dioxide

Duck-food plants: ecological and physiological studies on certain aquatic angiosperms, 4:425

sea-water tolerance, **6**:303, **7**:249

Duplicate determinations: calculation of probable error from, 2:226

Dwarf seedlings: apple, 6:205; cocklebur, 7:477; hawthorn, 6:205; peach, 6:205; Rhodotypos kerrioides, 5:161

Easter lilies: development of floral axis, new bud, 7:311

oxygen effects on dormancy, 10:381

ECKERSON, SOPHIA II. Conditions affecting nitrate reduction by plants, 4:119

Influence of phosphorus deficiency on metabolism of the tomato (Lycopersicon esculentum Mill.), 3:197

An organism of tomato mosaic, 1:100 Seasonal distribution of reducase in the various organs of an apple tree, 3:405

Eckerson, Sophia H.: See also Farr, Wanda K....; Kraybill, H. R.

Ecological significance of light intensity, 2:191

Electrodeposition of cellulose from cuprammonium dispersions, 10:113

Electrodes: capillary glass electrode, 3:347 Electrodialysis: freeing tobacco mosaic virus from accompanying solids, 1:479

Electrolytes: leaching in dormant potato tissue by chemical treatments, 5:83

Elm: germination, storage of seeds, 10:221
Emanations from plant tissues: produce epinasty, 7:97, 341, 8:99, 9:431; ethylene the active principle, 10:191

Emanations from plants treated with growth substances affect other plants, 10:481

Embryo: See Seeds

tubers, **5:**331

Enzymes: effects on infectivity of tobacco

on respiratory rate of potato tubers,

5:213, 6:123, 8:41

woody tissues, 1:365

mosaic virus, 3:147 Ethyl bromide: produces epinasty, 10:101 ethylene chlorohydrin effects on dormant Ethyl carbylamine effects: on potato tubers, lilac tissues, 4:513; on gladiolus corms, 4:131 Ethyl iodide: produces epinasty, 10:191 Ethyl mercaptan effects: breaks dormancy in dormant and after-ripening Sorbus in grapes, lilacs, potato tubers, 5:52 aucuparia seeds, 3:432 sulphur compounds effects on dormant on respiratory rate of potato tubers, 5:213, 8:41 potato tubers, 5:29 Ethylene: movement of gases into and See also Amylase; Catalase; Lipase; through plants, 3:313 Peroxidase; etc. production by plant tissues, 7:97, 341, Epichlorhydrin: effects on dormant potato 8:99, 9:431 tubers, 7:178 Ethylene effects: comparison to other Epicotyl dormancy in: lilies, 8:297 growth substances in effectiveness on tree peony, 5:451 pea seedling, 10:363 Viburnum, Q:79 epinasty of leaves, 4:177, 10:191 Epigaea repens: propagation, 8:81 on centipedes, 7:147 Epinasty: artificial orientation effects, 9:316 on dormancy, gladiolus, 2:523; potato capping effects, 10:389 tubers, 1:63, 65, 174 carbon monoxide effects, 5:195 on insects, 7:147 comparative effectiveness of ethylene on plants, 5:351, 7:147, 209, 231 and growth substances, 7:231 on roots, 5:351 essential oils from plant tissues do not on roses, 3:459 produce, 7:341, 8:99 Ethylene bromohydrin effects on: pH of ethylene effects on roses, 3:459 potato tuber juice, 3:333 gases effects on leaves, 4:177 respiration of potato tubers, 5:213, 7:1 growth substances effects, 7:87, 209, 349, Ethylene chlorohydrin: decomposition in 447, **0:**200, **10:**363, 481 potato tubers, 8:479 illuminating gas effects on roses, 3:459 forms β -(2-chloroethyl)-d-glucoside in, irradiated cinnamic acid effects, 10:197 treated gladiolus corms, 9:425; methyl ester of naphthaleneacetic acid treated potato tubers, 10:139 vapor effects on tomato leaves, forms β-glucoside in treated plant tis-10:325 sues, Q:213 plant tissue emanations effects, 7:97, sulphate decreases, glutathione increases 341, **8:**99, **9:**431 in treated potato tubers, 0:233 test for ethylene production by plant Ethylene chlorohydrin effects on: citric tissues, 7:97 acid content of Bryophyllum leaves, volatile chemicals effects, 10:191 8:283 Ergosterol, Irradiated: effects on plants, dormancy, See Dormancy . . . 6:237 germination, See Germination of seeds: Ergothioneine: structure, 0:228 ethylene chlorohydrin effects Errors: of analysis, sampling, 3:363 sulphydryl content of gladiolus corms, Essential oils from plant tissues: do not produce epinasty, 7:341, 8:99 Ethylene chlorthiocyanate: effects on dor-Esters of organic acids: See name of acid mant potato tubers, 7:178 Ether: effects on dormancy in gladiolus, Ethylene dichloride effects: on dormant po-2:523 tato tubers, 1:173; on dormant pot-Ethyl alcohol effects: on glutathione in dorgrown woody plants, 1:355 mant, gladiolus corms, 5:341; potato localization of response of dormant

Ethylene thiocyanohydrin: effects on potato tubers, 9:265

preparation method, 9:265

Euonymus radicans: comparative rooting with acids and salts of growth substances, 10:461

Eupatorium yellows: not same as aster yellows, 3:105

European mountain ash: after-ripening, germination, vitality of seeds, 3:413 vitality test of seeds, 0:339

Euscelis striatulus: cranberry false blossom carrier, 3:59

Fagopyrum esculentum: sulphur dioxide injury, 10:155

False blossom of cranberry: control measures, 3:80

disease and its insect vector, 3:59

noninfected leafhoppers unable to transmit disease, 3:79

probably distinct from aster yellows, 1:214

FARR, WANDA K. Behavior of the cell membrane of the cotton fiber in cuprammonium hydroxide solution, 10:71

Cotton fibers. I. Origin and early stages of clongation, 3:441

Cotton fibers. III. Cell divisions in the epidermal layer of the ovule subsequent to fertilization, 5:167

Cotton fibers. IV. Fiber abnormalities and density of the fiber mass within the boll, 6:471

FARR, WANDA K., and GEORGE L. CLARK.
Cotton fibers, 11. Structural features
of the wall suggested by X-ray diffraction analyses and observations in
ordinary and plane-polarized light,
4:273

FARR, WANDA K., and SOPHIA H. ECKER-SON. Formation of cellulose membranes by microscopic particles of uniform size in linear arrangement, 6:189

Separation of cellulose particles in membranes of cotton fibers by treatment with hydrochloric acid, **6:**309

FARR, WANDA K., and WAYNE A. SISSON.

Observations on the membranes of
epidermal cells of the *Avena* coleoptile, 10:127

X-ray diffraction patterns of cellulose particles and interpretations of cellulose diffraction data, 6:315

Fern-leaf of tomato: isolated from mottling principle, 1:336

FERNALD, EVELYN I. Freezing point depressions of asparagus shoots determined by a thermo-electric method, 3:483

Fertilizers: colloidal phosphate, 10:257

effects on pH of peats, 4:497

nitrogenous, 8:13; effects on composts, 8:263

phosphate, 10:257

Tennessee brown rock phosphate, 10:257 Fiber pots: effects on plant growth, 8:317

Fibers, Cotton: origin and early stages of elongation, 3:441 wall structure, 4:273

wan structure, 4.2/3

Fibers, Cotton seed: formation, 5:167

Ficus scabra: Herpetomonas bancrofti in latex, 3:375

Flagellates, Latex: in *Ficus scabra* and five other plants, 3:375

Flavors: carbon dioxide effects on fruits and vegetables, 3:219

FLEMION, FLORENCE. After-ripening at 5° C. favors germination of grape seeds, 9:7

After-ripening, germination, and vitality of seeds of Sorbus aucuparia L., 3:413

Breaking the dormancy of seeds of Crataegus species, 9:409

Dwarf seedlings from non-after-ripened embryos of peach, apple, and hawthorn, 6:205

Dwarf seedlings from non-after-ripened embryos of Rhodotypos kerrioides, 5:161

Physiological and chemical changes preceding and during the after-ripening of Symphoricarpos racemosus seeds, 6:91

Physiological and chemical studies of after-ripening of Rhodotypos kerrioides seeds, 5:143

A rapid method for determining the germinative power of peach seeds, 8:280

A rapid method for determining the viability of dormant seeds, 9:339

FLEMION, FLORENCE, and ALBERT HARTnaphthalene, See Naphthalene fumiga-ZELL. Effect of low temperature in shortening the hibernation period of insects in the egg stage, 8:167 Flower differentiation: in gladiolus, 3:173 Flower seeds: See Germination of seeds: Seed storage Flower spike: development in gladiolus, Flowering: carbohydrate-nitrogen ratio effects, 2:466 chemical composition of plants effects, cides, 9:249 2:475 chemicals effects on gladiolus, 2:531 growth substances effects, 7:447 light duration effects, 2:466, 478; on dahlia, 1:467 light intensity effects, 2:185 quality of radiation effects, 1:258 retardation by high concentrations of growth substances, See Growth sub-4:233 stances Flowers: color as affected by carbon dioxide, 6:403 lasting qualities as affected by, aspirin, 2:196; carbon dioxide, 2:535; growth substances vapors, 10:481; humidity, temperature, various chemicals, 2: 106 Fluoreneacetic acid: effects on plants, 7:200 Forcing: See Dormancy cides Formaldehyde: effects on activity of chemicals applied to overcome dormancy in potato tubers, 9:397 Formic acid: toxicity for meal worms, 7:424 Frasch foundation: See Herman Frasch foundation for research in agriculsulphur. 3:13 tural chemistry Freezing point depressions of asparagus shoots determined by a thermoelectric method, 3:483 Frost: changes in leaves before, 5:207 7:178 Fructose: determination in presence of pentoses, 10:441 Gas: See name of gas Fruit juices: thiourea prevents darkening,

7:55

509

Fruiting: light intensity effects, 2:185

quality of radiation effects, 1:258

Fruits: thiourea prevents browning, 7:55

ultra-violet effects on tomato, 2:157

Fumigation: β , β' -dichloroethyl ether, 10:47,

sulphur dioxide, 6:455 Fungi: carbon dioxide effects on hyphae, 6:395; on mycelial growth, 5:95 effects on seed coats, 6:01, 103 initiation of ascocarp, 6:339 oxygen requirements for mycelial growth, perithecia formation, 5:95 Fungi, Endophytic: in Lycopodium, 7:295 in trailing arbutus, 8:81 Fungicides: comparison of copper fungicomparative toxicity of sulphur, selenium, and tellurium, 4:415 organic compounds, 7:333 phenol compounds, 7:333 physical factors affecting efficiency of sulphur dusts, 3:524 precision of spore germination tests, resorcinol derivatives, 7:333 theory of toxicity tests, 10:329 thiocyanogen compounds, 7:333 toxicity as related to position of elements in periodic system, 6:479 toxicity surface, 5:173 See also Bordeaux mixture; Calcium hypochlorite; Hydrogen sulphide; Pentathionic acid; Sulphur fungi-Fungous spores: action of spores on Bordeaux mixture, 8:151 precision of germination tests, 4:233 production of germination tests, 4:233 production of hydrogen sulphide from theory of toxicity tests, 10:329 toxicity surface of fungicides, 5:173 See also Germination of spores Furane: effects on dormant potato tubers, Gardenia: forcing flower buds, 8:405 Gas, Illuminating: movement into and through plants, 3:313 Gas, Illuminating, effects: on hyacinth, 4:155 on lily, 4:155 on narcissus, 4:155 on plants, 3:313

on roses, 3:459 on tulip, 4:155 toxic action in soil, 6:1 Gases effects: anaesthetic effects on centipedes, insects, plants, 7:147 apparatus for studying effects on animals, 9:161 on plants, 4:177, 9:161 See also name of gas Gentiana: after-ripening, dormancy, germination, seedling development, 9:91 Geotropism: as a method for determining activity of growth substances, 9:498 effects on distribution of growth substances through plants, 0:455 growth substances effects, 8:217, 9:299, 10:363, 481 modification of direction and rate produced by growth substances treatment, **9:**299 positive response of horizontal shoots to growth substances, 10:363, 481 Germination of insect eggs: temperature effects on hibernation period, 8:167 Germination of pollen: 8:141, 10:429 viability prolonged by storage conditions, 10:420 Germination of seeds: Ambrosia trifida, 2:285; apple, 6:205; Arctostaphylos Uva-ursi, 9:71; bayberry, 4:19; Benzoin aestivale, 7:411; birch, 1:272, 2:47; black walnut, 8:1; butternut, 8:1; cocklebur, 2:304, 7:477; conifers, 2:315, 7:379; Cotoneaster, 6:323; Crataegus, 9:409; delphinium, 4:141, 7:405; desert plants, 8:7; elm, 10:221; flowers, 10:399; gentian, 9:91; grapes, 9:7; Halesia carolina, 4:27; hawthorn, 6:205; hickory nut, 8:1; lettuce, 8:25, 9:329; lilies, 8:297; Nelumbo nucifera, 1:289, 295; oats, 8:237; peach, 6:205, 8:289; pines, 2:315; Ptelea, 8:355; Rhodotypos kerrioides, 5:143, 161; rock garden plants, 10:235; Rosaceae, 3:385; Sorbus aucuparia, 3:413; Symphoricarpos racemosus, 6:91, 103; Tilia, 6:69; trailing arbutus, 8:81; tree peony, 5:451; vegetables, 7:323. 10:205; Viburnum, 9:79; wheat, 8:237; wild plum, 4:39 carbon dioxide effects on birch, 2:69

chlorophenol mercury effects on birch, hydrogen ion concentration effects, on birch, 2:50; on Sorbus aucuparia, 3:413 light effects, 1:82; on birch, 2:52; on elm, 10:221; on lettuce, 8:25; on oats, 8:237; on rock garden plants, 10:235; on wheat, 8:237 mercury compounds effects, 1:272 nitrogen effects, 1:82, 200 oxygen effects, 1:71, 82, 8:25 rapid viability test, 9:339 ripeness effects, on birch, 2:47; on parsnip, 2:110 statistical analysis of seed data, 4:219 sulphuric acid effects, 1:74, 82, 289 temperature effects, on conifers, 2:315, 7:379; on delphinium, 7:405; on desert plants, 8:7; on oats, 8:237; on parsnip, 2:115; on wheat, 8:237 temperature effects on seeds in water, temperature effects, See also Dormancy in seeds "Uspulun" effects on birch, 2:52 water effects, 1:67, 82, 8:237; on parsnip, See also Dormancy in seeds Germination of spores: fungicides effects, See Fungicides Gibson, Frederick. Agave murpheyi, a new species, 7:83 oecious, 10:45

Simmondsia californica Nuttall is di-GIERSBACH, JOHANNA. After-ripening and germination of Cotoneaster seeds, Germination and seedling production of Arctostaphylos Uva-ursi, 9:71 Germination and seedling production of species of Viburnum, 9:79 Some factors affecting germination and growth of gentian, q:91 GIERSBACH, JOHANNA, and LELA V. BAR-TON. Germination of seeds of the silver bell, Halesia carolina, 4:27 GIERSBACH, JOHANNA, and WILLIAM CROCKER. Germination and storage of wild plum seeds, 4:39 Gladiolus: bigeneric hybrid, 10:189 blasting, 3:192

dormancy, See Dormancy in gladiolus ethylene chlorohydrin effects on catalase, peroxidase, pH, and sulphydryl content of corms, 4:131

growth substances effects, 10:5

morphology, 3:173

new fragrant hybrid, 10:377

oxidase inhibits sulphur reduction by juice, 3:125

pollen viability prolonged by storage conditions, 10:429

Glass electrode, 3:347

Glucose: determination in presence of pentoses, 10:441

Glucoside, β: formation by plant tissue serves as detoxication mechanism, 9:213, 425

produced by plant tissue treated with ethylene chlorohydrin, 9:213

Glucoside, β-(2-chloroethyl)-d: formation by ethylene chlorohydrin treated, gladiolus corms. 9:425; potato tubers, 10:139

Glutathione: changes during storage of potato tubers, 9:17

changes in relation to respiratory rate of potato tubers, 8:41

determination method based on reaction with sulphur, **9**:223

determination methods compared, 9:17 ethyl alcohol effects on dormant, gladiolus corms, 5:341; potato tubers, 5:331

ethylene chlorohydrin effects on dormant, gladiolus corms, 5:341; potato tubers, 5:331, 9:17, 233

in dormant potato tubers increased by chemical treatments, 5:331

in fungous spores, 3:26

isolation from potato tubers, 5:331

produces, hydrogen selenide, hydrogen telluride, 4:422; hydrogen sulphide, 3:125, 4:99, 422

synthesis by chemically treated potato tubers, 9:17

synthesis from sulphate by potato tubers treated with ethylene chlorohydrin, 9:233

See also Sulphydryl compounds Glycollic acid: effects on plants, 7:95 Gossypium hirsutum: behavior of cell membranes, in cuprammonium hydroxide, 10:57, 71; in pure bacterial cultures, 10:267

catephoretic behavior of cell membranes in electrolytically prepared cuprammonium hydroxide, 10:113

cell divisions in epidermal layer of ovule subsequent to fertilization, 5:167

density of fiber mass, 6:471

fiber, abnormalities, **6:4**71; development, **9:2**39; formation, **5:**167

formation of cellulose membranes, **6:**189, **8:**401

orientation of fibers shown by X-ray diffraction, 9:239

origin and early stages of elongation of fibers, 3:441

pectic acid in fibers, 9:1

separation of cellulose particles by hydrochloric acid, **6**:309

X-ray diffraction analysis of cellulose particles, 8:389

X-ray diffraction patterns of cellulose particles, **6:**315

wall structure, 4:273

Grafts, Apple: environment effects on callusing, 2:351

Grape: See Vitis

Gravity effects in relation to ethyleneinduced epinasty of leaves, 4:203

Greenhouse, Insulated: heated by Mazda lamps, 7:131, 10:15

Greenhouses: at Boyce Thompson institute,

Greenness of leaves: relation to conditions of growth, 2:281

GRIFFITHS, A. E. Observations on the germination of lettuce seed, 0:320

Growth inhibition: chemicals effects on potato buds, 1:154

growth substances, effects on plants, 10:363; in high concentrations, See Growth substances

Growth substances
methyl ester of naphthaleneacetic acid
vapor effects on bud growth, 10:325

naphthalene compounds effects on bud growth, 10:481

oxygen effects on potato, 10:339

thioacetamide retards sprouting of potato tubers, 5:64

thiourea effects on bud inhibition and apical dominance of potato, 1:154

Growth promotion: See Dormancy; Epi-

nasty; Germination; Growth substances; Hormones; Rooting; Roots; etc.

Growth substances: 7:231
absorption by plants, 7:447
activity as affected, by acidity, 9:493,
498; by composition and concentration of buffers, 9:493; by condition
of plant material, 10:461; by humidity, 9:487; by light, 9:487, 10:481;
by temperature, 7:209, 9:487

comparative effectiveness, of acids and esters, 10:363; of acids, esters, and salts, 8:337, 9:493; of acids and salts, 10:461

comparative effectiveness, of indole, phenyl, and naphthalene compounds, 9:467; of indoleacetic, indolebutyric, and naphthaleneacetic acids, 10:461 comparative effectiveness, of solutions and powders on rooting, 10:461; of solutions and vapors, 10:363, 481

concentration increase increases number of roots on cuttings, 9:486 concentration range producing rooting,

growth, toxicity, 9:480, 486 concentration requirements, 10:461 deferred treatment effects, 9:485 definition, 10:483 distribution through plants, 9:299, 455 factors influencing solubility and pene-

tration, 10:461
methods of evaluation, 8:337
rate of movement in plants, 7:447
redistribution after treatment, 9:455
retreatment effects, 9:481

solvents effects on ability to penetrate, 9:480

specificity for rooting, 9:467 substitution for hormones, 9:299 test objects, green tissue, 9:463; tobacco plant, 7:349

translocation in plants, 9:500, 507, 508 transpiration influence on absorption and translocation, 9:487

tropic responses as method for determining relative activity, 9:299, 498

See also Acenaphthyl-(5)-acetic acid; Acetylene; Anthraceneacetic acid; Benzoic acid; Carbon monoxide; Cinnamic acid; Citric acid; Ethylene; Fluoreneacetic acid; Glycollic acid; Hormones; Indole compounds; Indole derivatives; Indoleacetic acid; Indolebutyric acid; Indolepropionic acid; Indolevaleric acid; Malonic acid; Naphthalene compounds; Naphthaleneacetic acid; Naphthaleneglycollic acid; Naphthaleneglyoxalic ethyl ester; Naphthylacetonitrile; Phenyl compounds; Phenylacetic acid; Phenylpropionic acid; Propylene; Pyruvic acid; Tartaric acid

Growth substances effects: on abscission of flowers, 10:481

on anatomy of *Tradescantia fluminensis*, **9:**439

on geotropism, 8:217

on guttation, 10:481

on lasting qualities of flower petals, 10:481

on plants under varying light conditions, 8:217

on respiration, 10:481

on rooting, 7:439, 447

on seedlings, 10:481

on sprouting of potato tubers, 9:265

on tropic responses in plants, 9:299

similar to those produced by capping upper part of tomato plants, 10:389

treated plants give emanations influencing other plants, 10:481

GUTERMAN, C. E. F.: See O'LEARY, KEITH, and C. E. F. GUTERMAN

GUTHRIE, JOHN D. Change in the glutathione content of potato tubers treated with chemicals that break the rest period, 5:331

Effect of chemical treatments of dormant potato tubers on the conductivity of the tissue and on the leaching of electrolytes from the tissue, 5:83

Effect of environmental conditions on the chloroplast pigments, 2:220

Effect of ethylene thiocyanohydrin, ethyl carbylamine, and indoleacetic acid on the sprouting of potato tubers, 9:265

Effect of light and of ethylene chlorhydrin on the citric acid content of Bryophyllum leaves, 8:283

The effect of various chemical treatments of dormant potato tubers on

- the peroxidase, catalase, pH, and reducing properties of the expressed juice, 3:400
- Factors influencing the development of ascorbic acid and glutathione in potato tubers following treatment with ethylene chlorhydrin, 9:17
- The inhibiting effect of oxidase on the reduction of sulphur by potato and gladiolus juice, 3:125
- Inhibition of the growth of buds of potato tubers with the vapor of the methyl ester of naphthaleneacetic acid, 10:325
- An iodimetric method for determining oxidase activity, 2:558
- Isolation of citric acid from potato tubers, 8:295
- Metabolism of citric, sulphuric, and
 nitric acid in the potato tuber. An
 explanation for the high pH of the
 juice of tubers treated with ethylene
 chlorhydrin, 6:247
- A new method for the determination of glutathione in tissues based on its reaction with sulphur to form hydrogen sulphide, 9:223
- Phosphatase activity of the juice of plant tissue following treatment with ethylene chlorohydrin, 9:293
- A stable colorimetric standard for chlorophyll determinations, 1:339
- The utilization of sulphate in the synthesis of glutathione by potato tubers following treatment with ethylene chlorohydrin, 9:233
- GUTHRIE, JOHN D., F. E. DENNY, and LAWRENCE P. MILLER. Effect of ethylene chlorhydrin treatments on the catalase, peroxidase, pH, and sulphydryl content of gladiolus corms, 4:131
- GUTHRIE, JOHN D., and FRANK WILCOXON.
 Estimation of sulphydryl in tissues,
 4:00
- Guthrie, John D.: See also Arthur, John M....; Denny, F. E....; Miller, Lawrence P....; Youden, W. J....
- Guttation: growth substances effects, 10:481 Gutzeit method for arsenic determinations on apples, 3:363

- Halesia carolina: germination of seeds, 4:27Halogenated aliphatic compounds: effects on respiration in potato tubers, 7:1
- HARPER, ROBERT A. Address at dedication of Institute, 1:53
- HARRIS, STANTON A., and H. JEANNE THOMPSON. Pectic acid from the cotton fiber, 9:1
- HARTZELL, ALBERT. Bionomics of the plum and peach leafhopper, Macropsis trimaculata, 9:121
 - Histopathology of insect nerve lesions caused by insecticides, 6:211
 - Histopathology of nerve lesions of Cicada after paralysis by the killerwasp, 7:421
 - Incubation period of peach yellows in its insect vector, 8:113
 - Movement of intracellular bodies associated with peach yellows, 8:375
 - A study of peach yellows and its insect vector, 7:183
- HARTZELL, ALBERT, and FRANK WILCOXON. Chemical and toxicological studies on organic thiocyanates, 7:407
 - Experiments on control of Japanese beetle larvae with β , β' -dichloroethyl ether, 10:509
 - Naphthalene fumigation at controlled concentrations, 2:512
 - Organic thiocyanogen compounds as insecticides, 6:260
 - Relative toxicity of pyrethrins I and II to insects, 8:183
 - Some factors affecting the efficiency of contact insecticides. II. Chemical and toxicological studies of pyrethrum,
 4:107
- HARTZELL, ALBERT, and W. J. YOUDEN. Efficiency of banding for the control of cankerworms, 7:365
- HARTZELL, ALBERT: See also FLEMION, FLORENCE . . . ; IMLE, E. P. . . . ; McCallan, S. E. A. . . . ; Weedon, F. R. . . . ; WILCOXON, FRANK . . .
- HARVILL, EDWARD K. Toxicity of various esters prepared from chrysanthemum monocarboxylic acid, the acidic portion of pyrethrin I, 10:143
- HARVILL, EDWARD K.: See also ARTHUR, JOHN M. . . .
- HAVER, FORREST E., JR., and JACK COMP-

TON. A method for the quantitative determination of glucose and fructose in the presence of pentoses, 10:441

Hawthorn: after-ripening, dormancy, dwarfing, germination of seeds, 6:205

Heating of greenhouses: by Mazda lamps, 7:131, 10:15

Helianthus tuberosus: light effects, 8:311
photoperiodism effects on tuberization,
10:1

IIeliothrips femoralis: fumigation with naphthalene, 2:519

Helium: effects on centipedes, insects, 7:147 Herman Frasch foundation for research in agricultural chemistry.

Paper no. 2, 2:389; no. 3, 2:417; no.4, 2:512; no. 5, 2:523; no. 6, 2:558; no. 10, 2:580; no. 11, 3:277; no. 14, 3:1; no. 18, 3:13; no. 19, 3:125; no. 20, 3:287; no. 21, 3:297; no. 22, 3:309; no. 23, 3:321; no. 26, 3:509; no. 27, 3:499; no. 31, 4:53; no. 32, 4:107; no. 33, 4:99; no. 34, 4:233; no. 35, 4:131; no. 48, 4:513; no. 49, 4:415; no. 50, 5:29; no. 55, 5:83; no. 56, 5:115; no. 58, 5:173; no. 59, 5:213; no. 65, 5:331; no. 67, 5:435; no. 68, 5:441; no. 70, 5:461; no. 71, 6:31; no. 72, 6:123; no. 73, 6:211; no. 74, 6:247; no. 75, 6:269; no. 76, 6:279; no. 83, 7:1; no. 84, 6:479; no. 86, 7:29; no. 87, 7:55; no. 92, 7:97; no. 93, 7:157; no. 98, 7:257; no. 99, 7:333; no. 100, 7:341; no. 106, 7:497; no. 107, 8:41; no. 108, 8:99; no. 113, 8:121; no. 114, 8:151; no. 120, 8:189; no. 121, 8:175; no. 122, 8:183; no. 126, 8:283; no. 127, 8:295; no. 129, 8:351; no. 135, 8:473; no. 139, 8:479; no. 140, 9:17; no. 150, 9:149; no. 151, 9:213; no 152, 9:223; no. 153, 9:233; no. 156, 9:249; no. 157, 9:265; no. 163, 9:283; no. 164, 9:293; no. 170, 9:397; no. 172, 9:403; no. 173, 9:425; no. 174, 9:431; no. 180, 10:47; no. 181, 10:139; no. 185, 10:191; no. 189, 10:325; no. 190, 10:329, no. 195, 10:509

Herpetomonas bancrofti n. sp. from the latex of a Ficus in Queensland, 3:375

Hesperidin crystals: carbon dioxide effects on sweet orange, 3:232

Hetero-auxin: See Indoleacetic acid

Hibernation of insect eggs: shortening with low temperature, 8:167

Hibernation of seeds: See Dormancy in seeds

Hibiscus syriacus: bottom heat influences rooting when treated with indolebutyric acid, 10:461

Hickory: seedling production, 8:1

Hippeastrum mosaic: cytological study of characteristic intracellular body, 1:414

precipitin reaction with tobacco mosaic, 3:532

Hippeastrum vittatum: pollen germination, storage, 8:141

HITCHCOCK, A. E. Effect of peat moss and sand on rooting response of cuttings, 1:430

Indole-3-n-propionic acid as a growth hormone and the quantitative measurement of plant response, 7:87

Tobacco as a test plant for comparing the effectiveness of preparations containing growth substances, 7:349

HITCHCOCK, A. E., WILLIAM CROCKER, and P. W. ZIMMERMAN. Effect of illuminating gas on the lily, narcissus, tulip, and hyacinth, 4:155

Toxic action in soil of illuminating gas containing hydrocyanic acid, **6**:1

HITCHCOCK, A. E., and P. W. ZIMMERMAN.
Absorption and movement of synthetic growth substances from soil as indicated by the responses of aerial parts, 7:447

Comparative activity of root-inducing substances and methods for treating cuttings, 10:461

Effect of chemicals, temperature, and humidity on the lasting qualities of cut flowers, 2:196

Effect of growth substances on the rooting response of cuttings, 8:63

 Relation of rooting response to age of tissue at the base of greenwood cuttings, 4:85

Unusual physiological responses induced on intact plants by capping with black cloth, 10:389

The use of green tissue test objects for

- determining the physiological activity of growth substances, 9:463
- HITCHCOCK, A. E.: See also CROCKER, WILLIAM . . . ; ZIMMERMAN, P. W.
- Holly: vegetative propagation, 2:205
- HOLMES, FRANCIS O. Accuracy in quantitative work with tobacco mosaic virus, 1:423
 - Cytological study of the intracellular body characteristic of *Hippeastrum* mosaic, 1:414
 - Herpetomonas bancrofti n. sp. from the latex of a Ficus in Queensland, 3:375
 - Inoculating methods in tobacco mosaic studies, 1:521
 - Local and systemic increase of tobacco mosaic virus, 2:563
 - Local lesions in tobacco mosaic, 1:504
 - Local lesions of mosaic in Nicotiana tabacum L., 3:163
 - Movement of mosaic virus from primary lesions in *Nicotiana tabacum* L., **4:297**
 - Symptoms of tobacco mosaic disease, 4:323
 - Ultra-violet light photography in the study of plant viruses, 1:407
- HOOPER, FLORENCE E. Disintegration of the cell membrane of the cotton fiber by a pure culture of bacteria, 10:267
- Hormones: increased in plant when upper part was kept in darkness, 10:389
 - redistribution with artificial orientation, 9:299
 - unequal distribution resulting from tropic responses before and after treatment with growth substances, 9:455
 - See also Growth substances
- Humidity: inexpensive instrument for testing, 2:72
- Humidity effects: on absorption of growth substances by plants, 7:447
 - on lasting qualities of cut flowers, 2:200 on transpiration of tobacco in infra-red light, 5:483
- See also Moisture effects; Water effects Hyacinthus: illuminating gas effects, 4:155 Hybridization: bigeneric gladiolus, 10:189 new fragrant gladiolus, 10:377

- Hydrocarbons: effects on plants, roots, 5:351
- Hydrocarbons, Aliphatic: effects on respiration in potato tubers, 7:1
- Hydrocyanic acid effects: on glutathione in dormant potato tubers, 5:331
 - on respiratory rate of potato tubers, 5:213, 8:41
- Hydrocyanic acid in illuminating gas: toxicity to plants, 6:1
- Hydrogen ion concentration: of Ambrosia trifida embryos, 2:291; of dahlia, 1:478; of expressed liquid, from plants, 3:267; from soils, 3:267; of Nelumbo nucifera seeds, 1:299, 305; of peats, 4:497; of phosphorus deficient tomatoes, 3:205, 209, 211; of various fruit juices, 3:358
 - calcium carbonate effects in plant analysis, 5:103
 - carbon dioxide effects, on plants, **5**:371, 403, **6**:403; on asparagus, **9**:137; on dormant potato tubers, **5**:471; on fungal hyphae, **6**:395; on potato tubers, **7**:113
 - changes in relation to respiratory rate of potato tubers, 8:41
 - chemicals effects on dormant potato tubers, 2:417; juice, 3:499
 - correlation, with glutathione increase in dormant potato tubers, 5:346; with iodine reduction in dormant potato tuber juice, 3:504
 - determination by capillary glass electrode, 3:347
 - ethylene chlorohydrin effects, on Bryophyllum leaves, 8:283; on dormant potato tubers, 6:247; on gladiolus corms, 4:131
 - halogenated aliphatic compounds effects on potato tubers, 7:1
 - isoelectric point of plant tissues, 1:278,
 - of amylase influences effects, of ethylene chlorohydrin, 5:441; of potassium thiocyanate, 5:441
 - of juice from potato tubers treated with ethylene chlorohydrin, 3:321, 6:247
 - of various parts of potato tubers, 3:327 sulphur compounds effects on dormant potato tubers, 5:29
 - sulphur dioxide effects on soils, 9:353

water effects on peats, 4:497 Hydrogen ion concentration effects on: action of thiocyanates on salivary amylase, 3:287 activity of growth substances, 9:493, 498 amylase, 5:441; in potatoes, 2:435 aquatic angiosperms, 4:438 callusing of apple cuttings and grafts, holly vegetative propagation, 2:205 invertase in potatoes, 2:435 potato oxidase, 2:560 rooting of cuttings, 1:439 seeds, See Dormancy in seeds . . . ; Germination of seeds Hydrogen peroxide: effects on root growth of cuttings in water, 2:616 Hydrogen selenide: production by glutathione, by yeast cells, 4:422 toxicity to spores, 4:415 Hydrogen sulphide: effects on respiration of dormant potato tubers, 5:29 injury to plants, 8:189 production, by glutathione, 4:422; by sulphured leaves and spores, 3:13; by yeast cells, 4:422; in tissues, 4:99 rôle in fungicidal action of sulphur, 2:380 toxicity to spores, 2:398, 3:13, 4:415 Hydrogen telluride: production by glutathione, by yeast cells, 4:422 toxicity to spores, 4:415 Hydroids: on aquatic angiosperms, 4:438 Hydrolysis: inulin, 5:112 sucrose, 5:103 seed composition effects on growth, growth substances effects, 10:363, 481

Hypocotyls: light effects on growth, 2:270 Hyponasty: carbon monoxide effects, 5:195 Ilex: vegetative propagation, 2:205 Illuminating gas: See Gas, Illuminating IMLE, E. P., and ALBERT HARTZELL. A cecidomyid larva infesting flowering stems of lilies, 10:277 Immunity: in Nicotiana to ring spot of tobacco, 4:359 Incomplete block replications to estimate tobacco-mosaic infectivity, 9:41, 49 Indian lotus: germination of century-old, recently harvested fruits, 1:289, 295

Indole compounds, X-ray diffraction analysis. 0:500 Indole derivatives: colorimetric detection in treated plants, 10:5 recovered from gladiolus corms treated with indolebutyric acid, 10:5 Indoleacetic acid: colorimetric detection in treated tissues, 9:455, 507 comparative effectiveness of three methods of application, 10:461 distribution through plants, 9:455 Indoleacetic acid effects: on gladiolus, 10:5 on plants, 7:87, 349, 447, 8:337; on plants grown under varying light conditions, 8:217 on rooting, 7:439; of woody cuttings, stimulates rooting on cut surfaces of potato tubers, inhibits sprouting of potato tubers, 9:265 tropic responses in plants, 9:299 Indoleacetic acid esters effects: on plants, 8:105, 337 on plants grown under varying light conditions, 8:217 Indoleacetic acid salts effects: on plants, Indolebutyric acid: colorimetric method of detecting, 9:455 comparative effectiveness of three meth-

ods of application, 10:461

comparative efficiency of three different forms in producing roots, 10:461

concentrations necessary for rooting various plant materials, 10:461

recovery and identification from indolebutyric acid treated tissues, 9:508 unequal distribution in treated plants, 9:455

X-ray diffraction analysis of acid recovered from treated tissues, 9:508 Indolebutyric acid effects: anatomical study

of roots produced, 8:493

on gladiolus, 10:5

on plants, 7:209, 349, 447, 8:337; on plants grown under varying light conditions, 8:217

on rooting, 7:439; of Syringa vulgaris, 10:461; of woody cuttings, 8:63 on tropic responses in plants, 9:299

Indolebutyric acid esters effects: on plants, 8:105, 337

on plants grown under varying light conditions, 8:217

Indolebutyric acid salts effects: on plants, 8:337

Indolepropionic acid effects: on plants, 7:87, 349, 447, 8:105, 337

on plants grown under varying light conditions, 8:217

on rooting, 7:439; of woody cuttings, 8:63

Indolepropionic acid esters effects: on plants, 8:105, 337

on plants grown under varying light conditions, 8:217

Indolepropionic acid salts effects: on plants, 8:3.37

Indolevaleric acid: rooting effects, 7:439 Indophenol reduction, by potatoes: chemi-

cals effects, 2:431 Infra-red: effects on transpiration in to-

bacco, **5**:483 Inhibition of growth: See Growth inhibition Insect catcher, **1**:196

Insect eggs: shortening hibernation period,

Insect transmission of peach yellows: 5:19,

incubation period, 8:113

Insecticides: effects on nerves and muscles,

spreading coefficient, 3:5

surface forces as related to wetting and tracheal penetration, 3:1

See also Acids, Fatty; Chrysanthemum monocarboxylic acid; Dichloroethyl ether, β, β'; Naphthalene fumigation; Nicotine; Pyrethrin; Pyrethrum; Rotenone; Soaps, Potassium; Thiocyanates

Insects: cicadas' nerves paralyzed by killerwasp, 7:421

heat effects, 6:217

insecticides effects, on muscles, 6:219; on nerves, 6:211

short wave radio effects on nerves, 6:217 thiocyanogen compounds effects on nerves, 6:269

tracheal penetration of contact insecticides, 3:8

wind dispersal of cankerworms, and control by banding, 7:365

Insulated greenhouse, 7:131, 10:15

Intracellular bodies associated with: *Hip-peastrum* mosaic, 1:414; peach yellows, 8:375; ring spot, 5:419; tomato mosaic, 1:109

Intracellular bodies in tobacco mosaic: in detached leaves, 1:347

possible relationship to Stanley's crystals, 8:333, 413

Intumescence: induced by capping plant, 10:389

Inulin: hydrolysis, 5:112

Invertase: acidity effects on dormant potato tubers, 2:435

chemicals effects on potatoes, 2:435

ethylene chlorohydrin effects on dormant, lilac tissues, 4:513; potato tubers, 2:435

lodimetric method for determining oxidase activity, 2:558

Iodine reduction by potato juice: chemicals effects, 2:432, 5:471, 7:113

Isoelectric point of plant tissues, 1:278, 309

Japanese beetle: larvae control by β , β' -dichloroethyl ether fumigation, 10:509

JENKINS, BERNICE: See BOURN, W. S., and BERNICE JENKINS

JENSEN, JAMES H. Leaf enations resulting from tobacco mosaic infection in certain species of *Nicotiana* L., 5:129

Jerusalem artichoke: light effects, 8:311 photoperiodism effects on tuberization, 10:1

JOHNSON, ARNOLD N.: See McCool, M. M., and Arnold N. Johnson

JONES, LEWIS R. America's need for plant research. (Address at dedication of Institute), 1:40

JOSEPH, HILDA C. Germination and keeping quality of parsnip seeds under various conditions, 2:115

Germination and vitality of birch seeds, **2:4**7

Juglans cinerea: seedling production, 8:1
Juglans nigra: seedling production, 8:1

Killer-wasp: sting paralyzes cicadas, 7:421 KRAYBILL, H. R., and S. H. ECKERSON. Tomato mosaic. Filtration and inoculation experiments, 1:329

KUNKEL, L. O. Celery yellows of California

not identical with the aster yellows of New York, 4:405

Insect transmission of peach yellows, 5:19

Studies on aster yellows, 1:181

Studies on aster yellows in some new host plants, 3:85

Lactuca sativa: chemistry of germination, 9:329

dormancy in seeds, 8:25

germination of seeds, 8:25, 9:329

Latex flagellates: in Ficus scabra, 3:375

in five plants, 3:378

Leaf enations: *Nicotiana* infected by tobacco mosaic, 5:129

Leaf roll of potato: ultra-violet photography, 1:407

Leafhoppers: noninfected ones unable to transmit cranberry false blossom, 3:70

See also Cicadula sexnotata; Euscelis striatulus; Macropsis trimaculata

Leaves: available carbon and nitrogen effects on growth of seedlings, 1:251, 2:1, 274

bases for calculations in measuring diurnal changes, 5:181

changes during period preceding frost, 5:297

diurnal changes, 4:65

effects on vegetative propagation of holly, 2:210, 215

light effects, 2:184, 270

produce hydrogen sulphide when dusted with sulphur, 3:13

seed composition effects, 2:270

twin-leaf method of studying changes, 2:592, 4:65, 5:181, 297

Length of day: See Photoperiodism

Lenticels: oxygen effects on development, 2:625

Lettuce: See Lactuca sativa

Light: transmission through glass filters,

Light duration: See Photoperiodism

Light effects: capping tomato plants produces effects similar to those of growth substances, 10:389

equipment for study at Institute in 1924, 1:16 on aquatic angiosperms, 4:425

on chloroplast pigments, 2:220

on citric acid content of Bryophyllum leaves, 8:283

on dormant gardenia flower buds, 8:405 on germination, See Germination of

seeds: light effects

on growth of seedling, 1:115, 2:251; in relation to available nitrogen and carbon, 2:1

on holly vegetative propagation, 2:210

on Jerusalem artichoke tuberization, 8:311

on Lycopodium vegetative propagation, 7:267

on microchemistry of plants, 1:123

on morphology of plants, 1:123

on nitrate reduction by plants, 4:119

on oxygen content of water in which green cuttings were rooting, 2:629

on plants' response to growth substances, **7:447**, **8:217**, **9:488**, **10:481**

on red pigment production in apples, 4:1

on root production by plants treated with carbon monoxide, 5:105

on stems, 2:184

on sulphur dioxide injury to plants, 10:155

on tobacco infected by tobacco mosaic, 5:139

on transpiration in tobacco, 5:483

on tropic responses of plants treated with growth substances, 9:299, 455

substitution of growth substances for hormones lost when plants were placed in darkness, 9:299

See also Ultra-violet effects

Light intensity effects: ecological significance, 2:191

on manganese content of plants, 7:427 on mineral composition of tomato plants, 9:105

on plants, 2:159, 445, 6:225, 7:119, 8:422

Light quality effects: on plants, 1:241, 397, 2:159, 7:119, 8:433

on root formation in cuttings treated with growth substances, 9:488

Light, Artificial: use to supplement daylight, 2:446

insulated greenhouse, 7:131, 10:15

See also Mazda lamps; Mercury arc lamps; etc.

Light, Polarized: cotton fiber wall studies, 4:273

Lilac: See Syringa vulgaris

Lilium: germination of seeds, 8:297

illuminating gas effects, 4:155

Penicillium rot, 8:361

pollen germination, 8:141

pollen storage, 8:141, 9:199

Lilium auratum: cecidomyid larvae infestation, 10:277

Lilium giganteum: development of floral axis, new bud, 7:311

Lilium longiflorum: development of floral axis, new bud, 7:311

oxygen effects on dormancy, 10:381

Lily mosaic: precipitin reaction with tobacco mosaic, 3:532

Limax: probably unable to transmit tobacco mosaic, 1:353

Lipase in seeds: lettuce, 9:329
Rhodotypos kerrioides, 5:143

LIPMAN, JACOB G. Address at dedication of Institute, 1:57

Local lesion method for measuring tobacco mosaic virus concentration: 1:504 statistical study, 6:437, 7:37, 9:41, 49

Local lesions of tobacco mosaic: in bean leaves, 2:549

in tobacco, 3:163

LOJKIN, MARY. Inactivation of tobacco mosaic virus by ascorbic acid, 8:335

Moisture and temperature requirements for yarovization of winter wheat, 8:237

Some effects of ultraviolet rays on the vitamin D content of plants as compared with the direct irradiation of the animal, 3:245

A study of ascorbic acid as an inactivating agent of tobacco mosaic virus, 8:445

LOJKIN, MARY, and CARL G. VINSON. Effect of enzymes upon the infectivity of the virus of tobacco mosaic, 3:147

Longevity: of pollen, 8:141, 10:429 of seeds, See Seeds: vitality

Lotus, Indian: germination of century-old, recently harvested fruits, 1:289, 295 water absorption by seeds, 1:301 Lycopodium: anatomy of spore coat, 7:267 mycorrhiza in, 7:295 spore germination, 7:267, 8:233 transplantation, 7:267 vegetative propagation, 7:267

McCallan, S. E. A., Albert Hartzell, and Frank Wilcoxon. Hydrogen sulphide injury to plants, 8:189

McCallan, S. E. A., and Frank Wilcoxon.

The action of fungous spores on
Bordeaux mixture, 8:151

The form of the toxicity surface for copper sulphate and for sulphur, in relation to conidia of Sclerolinia americana, 5:173

Fungicidal action and the periodic system of the elements, **6:479**

The fungicidal action of sulphur. II. The production of hydrogen sulphide by sulphured leaves and spores and its toxicity to spores, 3:13

Laboratory comparisons of copper fungicides, 9:249

The precision of spore germination tests, 4:233

McCallan, S. E. A.: See also Wilcoxon, Frank . . .

McCool, M. M. Composts, 8:263

Effect of light intensity on the manganese content of plants, 7:427

Effect of thallium sulphate on the growth of several plants and on nitrification in soils, 5:289

Effect of various factors on the pH of peats, 4:497

Effect of various factors on the soluble manganese in soils, 6:147

Fertilizer value of a new nitrogenous material, 8:13

Fertilizer value of colloidal phosphate, 10:257

Use of peats in composts to increase nitrification and plant growth, 4:257

Value of peats for mineral soil improvement, 4:245

McCool, M. M., and Arnold N. Johnson. Nitrogen and sulphur content of leaves of plants within and at different distances from industrial centers, 9:371

McCool, M. M., and A. MEHLICH. Soil

characteristics in relation to distance from industrial centers, 0:353

McCool, M. M., and W. J. Youden. The pH and the phosphorus content of the expressed liquids from soils and plant tissues, 3:267

McLean, Forman T. A bigeneric gladiolus hybrid, 10:189

A new fragrant gladiolus hybrid, 10:377

Macropsis trimaculata: bionomics, 9:121
incubation period of peach yellows, 8:113
peach yellows carrier, 5:19, 7:183,

8:113, 9:121
Malonic acid: effects on plants, 7:95

Malt: as affected by ethylene chlorohydrin, potassium thiocyanate, 5:441

Manganese: solubility in soils, 6:147 Manganese in plants: light intensity effects,

Mazda lamps: effects on plants, 7:119, 131,

Meal worms: formic acid toxicity, 7:424

Medicago sativa: sulphur dioxide effects,
9:179, 10:155

Mehlich, A.: See McCool, M. M. . . . ; Youden, W. J. . . .

MENUSAN, H., JR.: See DILLS, L. E., and H. MENUSAN, JR.

Mercerization: cuprammonium hydroxide treatment of cotton cellulose. 10:113

Mercuric disinfectants: effects on activity of chemicals applied to overcome dormancy in potato tubers, 9:397

Mercury: toxicity to plants, 6:167

Mercury arc lamps: effects on plants, 8:433 Mercury compounds: effects on germination of seeds, 1:272

Mercury vapor lamps effects: on mineral composition of plants, 6:225, 9:105 on plants, 7:119

Meristem: growth substances effects on Tradescantia fluminensis, 9:439

Mesityl oxide: effects on dormant potato tubers. 7:178

Metabolism: ethylene chlorohydrin effects, on *Bryophyllum* leaves, 8:283; on dormant potato tubers, 6:247

growth substances effects, 10:481 light effects on Bryophyllum leaves,

phosphorus deficiency effects on tomato, 3:197

Methyl disulphide breaks dormancy: in lilacs, 5:71

in potato tubers, 3:309, 5:71

Methylene blue reduction: by potato juice as affected by chemical treatments, 2:430, 3:499, 5:471, 7:113, 8:41

changes in relation to respiratory rate of potato tubers, 8:41

MILLER, LAWRENCE P. Decomposition of ethylene chlorhydrin in potato tubers, 8:479

Effect of sulphur compounds in breaking the dormancy of potato tubers and in inducing changes in the enzyme activities of the treated tubers, 5:20

The effect of the alkyl halides on the respiration of potato tubers, 6:279 The effect of thiocyanates upon amylase

activity. II. Salivary amylase, 3:287

The effect of treatments with ethylene chlorhydrin on the pH of the expressed juice of potato tubers, 3:321

Effect of various chemicals on the sugar content, respiratory rate, and dormancy of potato tubers, 5:213

Evidence that plant tissue forms a chlorine-containing β-glucoside from ethylene chlorhydrin, **9:** 213

Formation of β-(2-chloroethyl)-d-glucoside by gladiolus corms from absorbed ethylene chlorohydrin, **9**:425

Further experiments on the effect of halogenated aliphatic compounds on the respiration of potato tubers, 7:1

The influence of sulphur compounds in breaking the dormancy of potato tubers. Preliminary report, 3:309

Synthesis of β-(2-chloroethyl)-d-glucoside by potato tubers treated with ethylene chlorohydrin, 10:139

Time relations in effect of ethylene chlorhydrin in increasing and of ethyl alcohol in decreasing the respiration of potato tubers, 6:123

MILLER, LAWRENCE P., and F. E. DENNY.
Relation between quantity of ethylene chlorhydrin absorbed and growth response in treatments for shortening the rest period of potato tubers, 8:121

MILLER, LAWRENCE P., JOHN D. GUTHRIE, and F. E. DENNY. Induced changes

in respiration rates and time relations in the changes in internal factors, 8:41

MILLER, LAWRENCE P.: See also DENNY, F. E. . . . ; GUTHRIE, JOHN D. . . .

Mimosa pudica: anaesthetic effects of growth substances in vapor form, 10:363

carbon dioxide effects, 5:195

Mineral composition of plants: ashing method, 8:199

light intensity effects, **6:225**, **9:105** nutrient solutions effects, **9:105**

Mite, Red spider: fumigation with naphthalene, 2:519

Moisture effects: on germination of seeds, See Dormancy in seeds: water effects; Germination of seeds: water effects on rooting of cuttings, 1:439

on stored pollen, 8:141, 10:429

on sulphur dioxide injury to plants,

See also Humidity effects; Water effects MORINAGA, TOSHITARO. Effect of alternating temperatures upon the germination of seeds, 1:82

The favorable effect of reduced oxygen supply upon the germination of certain seeds. I:100

Germination of seeds under water, 1:67 Morphology: development of floral axis, new buds in Easter lilies, 7:311

of gladiolus, 3:173

of seeds, See Seeds: morphology

Mosaic diseases: See Abutilon mosaic;
Aucuba mosaic; Bean mosaic; Cucumber mosaic; Dahlia mosaic;
Hippeastrum mosaic; Lily mosaic;
Rugose mosaic; Sugar cane mosaic;
Tobacco mosaic; Tomato mosaic

Moss: See Peat moss

Mustard oil: from Cruciferae kills potato plants, 0:431

Mycorrhiza: in *Lycopodium*, 7:295 in trailing arbutus, 8:81

Myrica carolinensis: germination of seeds,

Myzus persicae: transmits dahlia mosaic, 5:235

Naias flexilis: ecological and physiological studies, 4:425

Rhizoctonia disease, 1:383

Naphthalene compounds: inhibit bud growth, 10:481

X-ray diffraction analysis, 9:509

Naphthalene fumigation: 5:461; at controlled concentrations, 2:512

effects on insects, 2:512

toxicity to plants, 2:512

Naphthaleneacetic acid: comparative effectiveness of three methods of application, 10:461

preparation, 8:467

Naphthaleneacetic acid effects: on gladiolus corms, 10:5

on plants, 7:209, 349, 447, 8:337; on plants grown under varying light conditions, 8:217

on rooting, 7:439; of woody cuttings, 8:63

on tropic responses in plants, 9:299

Naphthaleneacetic acid esters effects: on plants, 8:105, 337

on plants grown under varying light conditions, 8:217

Naphthaleneacetic acid methyl ester vapor: inhibits bud growth of potato tubers, 10:325

produces epinasty in tomato leaves
10:325

Naphthaleneacetic acid salts effects: on plants, 8:337

Naphthaleneglycollic acid: preparation, 8:467

Naphthaleneglyoxalic ethyl ester: preparation, 8:467

Naphthoylacetonitrile, β, Irradiated: effects on plants, 10:197

Naphthylacetonitrile, α: effects on plants, 7:200

Narcissus: illuminating gas effects, 4:155

Nelumbo nucifera: germination of centuryold, recently harvested fruits, 1:289, 295

water absorption by seeds, 1:301

Neon lamps: effects on plants, 7:119

Nerves of insects: insecticides effects, **6:211** short wave radio effects, **6:217**

thiocyanogen compounds effects, 6:260 triorthocresyl phosphate effects, 6:213

NEWELL, JOHN M.: See ARTHUR, JOHN M., and JOHN M. NEWELL

Nicotiana ring spot: See Ring spot of to-

Nicotiana tabacum: use in testing growth substances, 7:349

Nicotine: toxicity to Aphis rumicis, 3:5

Nitrate formation by peats: in composts,

in mineral soils, 4:245

Nitrate metabolism: in apple trees, 3:405 in tomato, 3:197

Nitrate reduction: by plants as affected by light, 4:110

See also Reducase

Nitrates: accumulated in dahlia in short day, 1:471

in tomato, 3:197

Nitrates effects on: chemical composition of plants, 2:470

chloroplast pigments, 2:24 r

growth of seedlings, 1:115, 2:1, 251, 274

Nitric acid: ethylene chlorohydrin effects on metabolism of dormant potato tubers, 6:247

Nitrification in soils: thallium sulphate effects, 5:289

Nitrocinnamic acids, Irradiated: effects on plants, 10:197

Nitrogen: changes in leaves, before frost, 5:297; during the night, 5:181 in apple trees, 3:405

Nitrogen effects on: ascorbic acid, glutathione production in chemically treated potato tubers, 9:17

callusing of apple cuttings and grafts, 2:374, 385

centipedes, insects, 7:147

germination, See Germination of seeds: nitrogen effects

seedling growth in relation to nitrogen reserves in seeds, 1:115

vitality of *Nelumbo nucifera* seeds, 1:297 Nitrogen compounds: artificial climates effects on plant composition, 2:445

ethylene chlorohydrin effects on dormant gladiolus corms, 5:435

in potato tubers, 2:131

seed composition effects on seedling growth, 2:1, 251, 274

utilization by potato sprouts, 2:97

Nitrogen fertilizers: 8:13

effects on composts, 8:263

Nomogram used with: Gutzeit arsenic de-

terminations on apples, 3:363 seed germination data, 4:219 toxicity tests of fungicides, 10:336 Nutrient solutions: for aquatic angiosperms,

4:459

irradiated tomato plants grown in, 9:105 Nuts: germination, 8:1

Oakleaf: in dahlia, 5:282

Oats: cellulose in coleoptile epidermis, 10:127

growth substances effects on coleoptile, 10:481

yarovization of seeds, 8:237

OHGA, ICHIRO. Comparison of the life activity of century-old and recently harvested Indian lotus fruits, 1:295

A double maximum in the rate of absorption of water, by Indian lotus seeds, 1:301

The germination of century-old and recently harvested Indian lotus fruits, with special reference to the effect of oxygen supply, 1:289

O'LEARY, KEITH, and C. E. F. GUIERMAN.

Penicillium rot of lily bulbs and its
control by calcium hypochlorite,
8:361

Onion thrips: fumigation with naphthalene,

Organic acids: acidification by addition of salts, 1:322

Osmotic pressure: as related to growth in asparagus shoots, 3:483

Oxidase: effect of enzyme concentration on activity, 2:560

inhibits sulphur reduction by gladiolus and potato juice, 3:125

iodimetric method for determining activity, 2:558

Oxygen: micro-determination in water, 2:617

necessary for development of glutathione, ascorbic acid in potato tubers, 9:17

Oxygen effects on: aquatic angiosperms, 4:459

callusing of apple cuttings and grafts, 2:351

dormancy, See Dormancy . . .

germination, See Germination of seeds: oxygen effects

gladiolus corms treated with growth substances, 10:5 lily bulbs, 10:381 Neurospora sitophila, 5:95 root growth of cuttings in water, 2:616 roses, 2:535

Paeonia suffruticosa: seedling production, 5:451

Paleacrita vernata: control by banding, wind dispersal, 7:365

Pancreatin: ethylene chlorohydrin, potassium thiocyanates effects, 5:441

Paper pots: effects on plant growth, 8:317 Paradichlorbenzene: effects on dormant potato tubers, 7:178

Parsnip: germination and keeping quality of seeds, 2:115

Parthenocarpy: growth substances effects, 10:363

methyl and ethyl α-naphthaleneacetate effects, 10:481

Particle size: determination, 3:515

Pastinaca sativa: germination and keeping quality of seeds, 2:115

Peach: See Prunus persica

Peach leafhopper: See Macropsis trimaculata

Peach yellows: 7:183

aster probably immune, 3:113

Cicadula sexnotata unable to transmit to aster, 1:211; to peach, 1:211, 3:111

incubation period, 8:113

insect transmission, 5:19

intracellular bodies, 8:375

Macropsis trimaculata vector, 5:19, 7:183 precipitin reaction with tobacco mosaic, 3:532

Peat moss: buffer properties, 1:451 hydrogen ion concentration, 3:267, 4:497 phosphorus content, 3:267

stratification of rosaceous seeds, 3:385
Peat moss effects on: callusing of apple
cuttings and grafts, 2:351

composts, 4:257 germination of birch seeds, 2:50 holly propagation, 2:205 mineral soils, 4:245 rooting response of cuttings, 1:439

Pectic acid: in cotton, 9:1

Pectin: in cellulose membranes, 6:189; separation, 6:309

Pectin solutions: acidification by addition of salts, 1:323

"Penetrol": as emulsifying agent for thiocyanogen compounds, 6:269, 7:29, 497

effects on toxicity of nicotine to Aphis rumicis, 3:8

Penicillium rot: control in lilies, 8:361

Pentathionates: preparation, 2:395

toxicity to fungi, 2:407

Pentathionic acid: rôle in fungicidal action of sulphur, 2:389

toxicity to fungi, 2:394

Periderm: of potato tubers, 10:339

permeability in relation to dormancy, 10:339

Peroxidase: changes in relation to respiratory rate of potato tubers, 8:41

chemicals effects on dormant potato tuber juice, 2:417, 3:499, 8:41

ethylene chlorohydrin effects, on dormant potato tubers, 2:426; on gladiolus cornis, 4:131

in Symphoricarpos racemosus seeds, 6:91 method of determining activity, 5:34

sodium thiocyanate effects on dormant potato tubers, 2:426

sulphur compounds effects, 5:29

thiourea effects on dormant potato tubers, 2:426

Perry, Lewis. Address at dedication of Institute, 1:54

Petre, A. W. Factors influencing the activity of tobacco mosaic virus preparations, 7:19

Petre, A. W.: See also Vinson, C. G. . . .

PFEIFFER, NORMA E. Anatomical study of plants grown under glasses transmitting light of various ranges of wave lengths, 1:397

Anatomical study of root production on application of indolebutyric acid to *Cissus* aerial roots, **8:493**

Development of the floral axis and new bud in imported Easter lilies, 7:311

Life of Gladiolus pollen prolonged by controlled conditions of storage, 10:429

Longevity of pollen of Lilium and hybrid Amaryllis, 8:141

Microchemical and morphological studies of effect of light on plants, 1:123

A morphological study of Gladiolus, 3:173 Morphology of the seed of Symphoricarpos racemosus and the relation of fungal invasion of the coat to germination capacity, 6:103 Viability of stored Lilium pollen, 9:199 pH: See Hydrogen ion concentration Phenol compounds: as fungicides, 7:333 Phenyl compounds: effects on dormant potato tubers, 10:481 Phenylacetic acid: effects, on plants, 7:209, 349, 447, 8:337; on plants grown un-

der varying light conditions, 8:217; on rooting, 7:439; of woody cuttings, 8:63

esters effects, on plants, 8:105, 337; on plants grown under varying light conditions, 8:217

salts effects on plants, 8:337

Phenylacrylic acid: See Cinnamic acid Phenylpropionic acid: effects on plants,

7:95, 349, 447 Phloem: growth substances effects on Tra-

descantia fluminensis, 9:439 Phosphatase: ethylene chlorohydrin effects, 9:293

inhibitor, 9:293

Phosphate: fertilizer value of colloidal, Tennessee brown rock, 10:257

Phosphate solutions: acidification by addition of salts. 1:320

Phosphates: effects on chloroplast pigments, 2:241

Phosphoric acid: as source of phosphorus for plants, 9:105

Phosphorus: deficiency effects on metabolism of tomato, 3:197

in expressed liquid from soils, 3:267 radiation effects on plants, 9:105

Phosphotungstic reagent reduction in potatoes: chemicals effects, 2:433

Photography: of bacteria, 1:412

ultra-violet light photography in study of plant viruses, 1:407

Photoperiodism effects on: plant growth, 2:445, 7:131, 10:15

root formation and flowering of dahlia A STATE OF THE STA cuttings, 1:467

tuberization of Helianthus tuberosus. 10:1 Photosynthesis: twin-leaf method of

ing changes in leaves, 2:504

Phototropism: effects on distribution of growth substances through plants,

Pigment, Brown, soluble in dilute acetone: determination, 2:224

Pigments: carbon dioxide effects on fruits and vegetables, 3:219

chemicals effects on potato juice, 2:431 determinations of chloroplast pigments,

environment effects on chloroplast, 2:220 ethylene and illuminating gas effects on roses, 3:450

production in apples by artificial light,

sulphur compounds effects, 5:29

thiourea prevents browning of plant juices, tissues, 7:55

tomato mosaic effects on chloroplast, 2:244

See also Anthocyanin; Chlorophyll; Xanthophyll

Plum, Wild: germination and storage of secds, 4:39

Plum leafhopper: See Macropsis trimaculata Polarity: effects on callusing of apple cuttings and grafts, 2:357, 378, 385

Polarized light: cotton fiber wall studies, 4:273

Pollen: germination, 8:141, 10:429

storage, 8:141, 9:199, 10:429

viability prolonged by storage conditions, 10:420

Polysaccharides, changes in leaves: before frost, 5:207

during night, 5:181

Popillia japonica: larvae control by β , β' dichloroethyl ether fumigation, 10: 500

POPP, HENRY WILLIAM. Physiological study of the effect of light of various ranges of wave length on the growth of plants, 1:241

Porter, L. C.: See L. C. PORTE Portulaca oler**a** roots in

Potamos Potan

Rhizoctonia disease, 1:383 Potassium: deficiency effects on nitrate reduction by plants, 4:125 effects on chloroplast pigments, 2:241 Potassium cyanide effects on: acidity of potato tubers. 3:400 amylase activity of potato juice, 3:297, catalase, peroxidase, reducing properties of potato tubers, 3:499 Potassium soaps: as contact insecticides, Potassium thiocyanate effects: causes multiple sprouts on potato, 1:160 on amylase activity, 4:53, 5:441 on dormant potato tubers, 5:83, 7:178 on takadiastase, 5:441 Potato: See Solanum tuberosum Pots, Fiber and Paper: effects on plant growth, 8:317 Precipitin reactions: device for lighting, freeing tobacco mosaic virus from accompanying solids, 1:479 of filterable plant viruses, 6:407 specificity in tobacco mosaic, 3:529 PRICE, W. C. Acquired immunity to ringspot in Nicotiana, 4:359 Local lesions on bean leaves inoculated with tobacco mosaic virus. 2:540 PRIODE, C. N. Further studies in the ringspot disease of tobacco, 1:341 Probable error: calculation from duplicate determinations, 2:226 Propagation: See Germination of seeds; Growth substances; Rooting Propyl chloride: produces epinasty, 10:191 Propylene effects: epinasty of leaves, 4:194 on centipedes, insects, 7:147 on plants, 5:351, 7:147, 209, 231 on roots, 5:351 Protein: seed composition effects on seedling growth, 2:1, 251, 274 rotein solutions: acidification by addition as host to Macropsis **1:0, 7:183, 8:**113, **9:**121 storage of seeds, 4:39 ter-ripening of seeds,

seed testing, 8:280 Ptelea: germination of seeds, 8:355 PURDY, HELEN A. Attempt to cultivate an organism from tomato mosaic, 1:146 Improbability of tobacco mosaic transmission by slugs, 1:353 Multiplication of the virus of tobacco mosaic in detached leaves, 1:347 Purdy, Helen A.: See also Beale, Helen PURDY Purslane: origin of adventitious roots in cuttings, 3:337 Pyrethrin I: determination, 8:175 toxicity of acidic portion, 10:143 Pyrethrins I and II: effects on insects, 6:212 extraction method, 5:115 relative toxicity to insects, 5:115, 8:183 Pyrethrum: analysis, 8:175 chemistry, 4:107, 5:115 toxicity curve, 4:107 toxicity to Aphis rumicis, 4:107, 5:115 ultra-violet effects, 4:107 Pyrus aucuparia: See Sorbus aucuparia Pyrus malus: after-ripening, dormancy, and germination of seeds, 6:205 after-ripening, germination and storage of seeds, 3:385 arsenic spray residue, 3:363 browning of tissues prevented by thiourea, 7:55 callusing of cuttings and grafts, 2:351 dwarfing, 6:205 red pigment production by artificial light, 4:1 seasonal distribution of reducase in various organs, 3:405 vitality test of seeds, 9:339 Pyruvic acid: effects on plants, 7:95 RABINOWITSCH, BRUNO, Observations on the structure of cotton fibers in the dark field, 8:401 Radiant energy: See Infra-red; Light; Mazda lamps; Mercury arc lamps; Mercury vapor lamps; Neon lamps;

Photoperiodism; Short wave radio; Sodium Lumps, Sodium vapor lamps;

Ultra-violet
Radish: See Raphanus sativus

germination of seeds, 3:385, 6:205, 8:289

seed storage, 3:385

Ragweed: primary dormancy, after-ripening, and development of secondary dormancy in embryos, 2:285

Raphanus sativus: mustard oil constituent kills potato plant, 9:431

Red spider mite: fumigation with naphthalene, 2:510

Reducase: influence of phosphorus deficiency on metabolism of tomato, 3:197

seasonal distribution in various organs of apple tree, 3:405

Reducing system in tissues: 4:99, 119 carbon dioxide effects, 5:478, 7:113 chemicals effects, 2:435, 3:499 ethylene chlorohydrin effects, 2:417,

sulphur compounds effects, 5:29

Reduction of iodine by potato juice: chemicals effects, 3:499

correlation with pH, 3:504

Regeneration: See Germination; Rooting

REID, MARY E. Effect of variations in the amounts of available carbon and nitrogen on the growth of wheat seedlings, 2:274

Growth of seedling in relation to composition of seed, 1:115

Growth of seedlings in light and in darkness in relation to available nitrogen and carbon, 2:1

Relation of composition of seed and the effects of light to growth of seedlings, 2:251

Resorcinol derivatives: as fungicides, 7:333
Respiration: of Ambrosia trifida embryos,
2:296; of gladiolus corms during prolonged dormancy, xo:453; of lilac
twigs, 4:513

alkyl halides effects on dormant potato tubers, 6:279, 7:1

carbon dioxide effects, on asparagus, 9:137; on fruits and vegetables, 3:219; on plants, 5:371, 403; on potato tubers, 3:239, 5:471; 7:113

changes in leaves during the night, 4:05

chemicals effects on dormant potato tubers, 5:213, 8:41

ethyl alcohol effects on potato tubers, 5:213, 6:123, 8:41

ethylene chlorohydrin effects on potato

tubers, 6:123, 8:41

growth substances effects, 10:481

halogenated aliphatic compounds effects on dormant potato tubers, 7:1

hydrogen sulphide effects on dormant potato tubers, 5:29

increases in relation to breaking of dormancy, 5:213

oxygen effects on dormant potato tubers, 5:471

relation to chemical changes in potato tubers, 8:41

sulphur compounds effects on dormant potato tubers, 5:20

Respiration of seeds: Nelumbo nucifera, 1:298

Xanthium, 2:310

Rest period: See Dormancy

Rhizoctonia solani: on aquatic plants, 1:383, 4:441

Rhodotypos kerrioides: after-ripening of seeds, 5:143, 161

dwarfing, 5:161

vitality test of seed, 9:339

Rickets: effects of ultra-violet rays on vitamin D content of plants as compared with direct irradiation of animals, 3:245

Ring spot of dahlia, 5:276

Ring spot of tobacco: host plants, 1:343;
Nicotiana, 5:419; petunia, 5:430;
Phaseolus lunatis, 4:366; Phaseolus
vulgaris, 4:366; Vigna sinensis, 4:366
acquired immunity in Nicotiana, 4:359

cellular changes, 6:51 comparison with tobacco mosaic in bean varieties, 2:557

intracellular bodies, 5:419

local lesion method for measuring virus concentration, 7:37

temperature effects on virus, 1:344 ultra-violet photography, 1:407

Rio Grande disease: See Aster yellows

Ripening: carbon dioxide effects on fruits and vegetables, 3:219

ROBINS, RAYMOND. Address at dedication of Institute, 1:49

Rock garden plants: germination of seeds, growth, 10:235

Rooting: of apple, 2:351; of coleus, 2:39; of dahlia in different day lengths, 1:467; of holly, 2:205; of Lycopodium,

7:267; of Portulaca oleracea, 3:337; of produced on cut surfaces of potato tubers roses, 5:313; of trailing arbutus, 8:81 by indoleacetic acid, 9:265 age of tissue effects, 4:85 seed composition effects, 2:251 bottom heat effects on indolebutyric Roots, Adventitious: origin in coleus, 2:39; acid treated cuttings, 10:461 in Portulaca oleracea, 3:337; in roses, capping effects, 10:380 carbon monoxide effects, 5:1 Roots, Contractile: morphology, of gladiocomparative effectiveness of growth sublus, 3:173 Rosa: anatomy of canes, 5:313 stances in solutions and powders, in various concentrations, 10:461 carbon dioxide effects on cut flowers, growth substances effects, 7:439, 447, 2:535 10:363, 481; on woody cuttings, 8:63 development of adventitious roots, 5:313 hydrocarbons effects, 5:351 ethylene effects, 3:459 indolebutyric acid effects on Syringa illuminating gas effects, 3:459 vulgaris, 10:461 microchemical studies of cuttings, 1:529 light effects, on dahlia, 1:467; on plants Rosaceae: after-ripening, germination, and treated with carbon monoxide, 5:195 storage of seeds, 3:385 microchemical studies of rose cuttings, Rotenone: effects on insects, 6:217, 7:497 Rugose mosaic of potato: ultra-violet oxygen effects on cuttings in water, photography, 1:407 Ruppia maritima: ecological and physio-2:616 peat moss effects, 1:439, 446 logical studies, 4:425 qualitative and quantitative differences Rhizoctonia disease, 1:383 induced by growth substances, 10:5; sea-water tolerance, 7:249 as influenced by condition of plant material, 10:461 Saliva: thiocyanates effects on amylase, sand effects, 1:439, 446; on holly, 2:205 slag effects on holly, 2:205 Salts effects: acidification of unbuffered soluspecificity of growth substances, 9:467 tions by plant tissues, 1:309 talc effects, 10:461 on acidity of peats, 4:497 temperature effects on holly, 2:211 on aquatic angiosperms, 4:458 tissues producing, increased with in-Salts, of organic acids: See name of acid Salvia: twin-leaf method of studying creased concentration of growth substances, **9:4**89 changes in leaves, 2:592 Sampling: calculation for duplicate deterwater effects, 1:439 minations, 2:226 Roots: anatomical study of root-producing tissues treated with growth suberrors in sampling plants, 2:455 method for soils, 9:59 stances, 9:439 nomogram for use in connection with anatomical study of roots produced by Gutzeit arsenic determinations on indolebutyric acid, 8:493 available carbon and nitrogen effects on apples, 3:363 growth, 2:1, 274 precision in spore germination tests, carbon monoxide effects, 5:1, 195 4:233 statistical analysis of seed germination comparative effectiveness of ethylene and growth substances, 7:231 data, 4:219 SCHOENER, FATHER GEORGE: hybrid rose growth substances effects, 7:87, 209, 349, germination, 3:400 439, 447 SCHROEDER, ELTORA M. Dormancy in seeds hydrocarbons effects, 5:351 light effects, 2:182, 251 of Benzoin aestivale L., 7:411 number increased with increase of con-Germination of fruits of Ptelea species,

SCHROEDER, ELTORA M., and LELA V. BAR-

centration of growth substances,

9:486

TON. Germination and growth of some rock garden plants, 10:235 Sea-water effects: on aquatic angiosperms, Sea-water tolerance of: Potamogeton foliosus, 6:303 Ruppia maritima, 7:249 Vallisneria spiralis, 6:303 Secondary dormancy in seeds: Ambrosia trifida, 2:285 Sorbus aucuparia, 3:413 Seed sterilization: birch, 2:47 Seed storage: 2:115; birch, 2:47; delphinium, 4:141; desert plants, 8:7; elm, 10:221; flowers, 10:399; parsnip, 2:115; Picea, Pinus, 7:379; Sorbus aucuparia, 3:413; vegetables, 7:323, 10:205; wild plum, 4:39 Seed testing: rapid viability test, 9:339 See also Seeds: vitality Seedling growth: available carbon and nitrogen effects, 2:1, 251, 274 carbon dioxide effects, 2:1, 251, 274 growth substances effects, 10:481 light effects, 2:1, 182, 251 seed composition effects, 1:115, 2:1, 251, 274, **5:**161, **6:**205 Seeds: after-ripening, See After-ripening of century-old Nelumbo nucifera, 1:292, 295 composition effects on seedling growth, 1:115, 2:1, 251, 274, 5:161, 6:205 dormancy, See Dormancy in seeds germination, See Germination of seeds morphology, gladiolus, 3:186; Symphoricarpos racemosus, 6:103 respiration, See Respiration of seeds storage, See Seed storage testing, See Seed testing vitality, 9:339; of birch, 2:47; of Nelumbo nucifera, 1:292, 295, 301; of

vitality, 9:339; of birch, 2:47; of Nelumbo nucifera, 1:292, 295, 301; of parsnip, 2:115; of peach, 8:289; of Rosaceae, 3:385; of Sorbus aucuparia, 3:413; See also Seed storage water absorption by century-old Nelumbo nucifera, 1:301 yarovization of oats, wheat, 8:237

Selenium: toxicity compared to sulphur, tellurium, 4:415

Serum reactions: device for lighting precipitin tests, 6:165 of filterable plant viruses, 6:407 of tobacco mosaic, 3:529

SETTERSTROM, CARL. Sulphur dioxide content of air at Boyce Thompson Institute. II, 10:183

SETTERSTROM, CARL, and P. W. ZIMMER-MAN. Apparatus for studying effects of low concentrations of gases on plants and animals, 9:161

Factors influencing susceptibility of plants to sulphur dioxide injury. I, 10:155

Sulphur dioxide content of air at Boyce Thompson Institute, 9:171

SETTERSTROM, CARL, P. W. ZIMMERMAN, and WILLIAM CROCKER. Effect of low concentrations of sulphur dioxide on yield of alfalfa and Cruciferae, 9:179
SETTERSTROM, CARL: See also WEEDON.

SETTERSTROM, CARL: See also WEEDON, F. R. . . .

Shippy, William B. An inexpensive and quickly made instrument for testing relative humidity, 2:72

Influence of environment on the callusing of apple cuttings and grafts, 2:351

SHIRLEY, HARDY L. The influence of light intensity and light quality upon the growth of plants, 2:159

Shoots: See Seedling growth

Short wave radio: effects on insects, 6:217 Silver bell: germination of seeds, 4:27

Simmondsia californica is dioecious, 10:45

Sisson, Wayne A. Identification of crystalline cellulose in young cotton fibers by X-ray diffraction analysis, 8:389

Orientation in young cotton fibers as indicated by X-ray diffraction studies, 9:239

Some observations upon the dispersion, electrokinetic and coagulation behavior of cotton fibers in cuprammonium hydroxide solution, 10:113

X-ray diffraction analysis and its application to the study of plant constituents, 9:381

Sisson, Wayne A.: See also Farr, Wanda K....

Slugs: probably unable to transmit tobacco mosaic, 1:353

Snapdragon: aspirin effects on flowers, 2:197 Snowberry: See Symphoricarpos racemosus Soap: spreader for contact insecticides, 3:1

rôle of mother tuber in growth of plant,

rooting from cut surfaces produced, by

thiourea prevents browning of cut tis-

Sorbus aucuparia: after-ripening, germina-

Spectrographic determination of calcium in

Sphecius speciosus: sting paralyzes cicadas,

Spores: anatomy of Lycopodium coat, 7:267

germination, See Germination of spores

for estimating tobacco mosaic virus,

STEWART, W. D., and JOHN M. ARTHUR.

6:437

tion, vitality of seeds, 3:413

butyric acid, 9:265

water in mother tuber, 2:97

vitality test of seeds, 9:330

Spectral-glass greenhouses, 1:17

plant ashes, 7:103

See also Fungous spores

sues, 7:55

7:421

indoleacetic acid, 9:265; by indole-

Soaps, Potassium: as contact insecticides, Sodium lamps: effects on plants, 7:110 Sodium nitrate: effects on potato tubers, 1:63 Sodium oleate: effects on toxicity of nicotine to Aphis rumicis, 3:8 Sodium thiocyanate effects on: amylase in dormant potato tubers, 4:53 dormant potato tubers, 1:373, 2:131, 7:157; when disinfected, 9:397 enzyme activities in potatoes, 2:417 starch content of potatoes, 2:580 sucrose content of potatoes, 2:580 Sodium vapor lamps: effects on plants, 8:433 Soils: hydrogen ion concentration, 3:267 phosphorus content, 3:267 quality modifies sulphur dioxide injury to plants, 10:155 sampling method, 9:59 steam sterilization effects on manganese content, 6:147 sulphur dioxide effects, 9:353 Soils, Mineral: improved by peats, 4:245 Solanum tuberosum: amylase, See Amylase in dormant potato tubers carbon dioxide effects, 5:371, 403; on chemical constitution of tubers, 7:113 carbon dioxide in juice, 3:325

juice, 3:125

stances, 10:481

phenyl compounds effects as growth sub-

Sprouting: chemicals effects, on dormant potato tubers, 1:59, 169, 373; on gladiolus, 2:531 relation to enzyme activity of potatoes, 2:439 thiourea effects on bud inhibition and apical dominance of potato, 1:154 See also Germination of seeds; Rooting Stanley's crystals in tobacco mosaic: possible relationship to intracellular bodies, 8:333 chemical analysis of mother tuber, 2:94 relation to intracellular crystalline dechemical changes in eye tissue, 2:131 posits, 8:413 chemicals effects, on conductivity of tis-STANTON, ERNEST N.: See DENNY, F. E., sues, 5:83; on leaching of electrolytes and Ernest N. Stanton from tissue, 5:83 Starch content: changes in chemically citric acid isolated from, 8:295 treated dormant potato tubers, 2:131, dormancy, See Dormancy in potato tubers effects of various qualities of radiation effect of amputation of mother tuber on on storage, I:259 growth of plant, 2:77 effects on callusing of apple cuttings and ethyl alcohol effects on respiration, 6:123 grafts, 2:381 ethylene chlorohydrin effects, on acidity in potato tubers, 2:131 in rose cuttings in relation to rooting, of juice, 3:321; on respiration, 6:123 eye tissue in tuber, enzyme activity, 1:538 utilization by potato sprout, 2:97 2:437, 442 Starch determination: by solubility in acids, methyl ester of naphthaleneacetic acid vapor inhibits bud growth in tubers, **6:**38r takadiastase method, 6:129, 381 Statistical study of the local lesion method oxidase inhibits sulphur reduction by

Change in mineral composition of the tomato plant irradiated with a quartz-mercury vapor lamp and its relation to the level and ratio of calcium and phosphorus in the nutritive medium, 9:105

An improved method for ashing of plant material, 8:199

Some effects of radiation from a quartz mercury vapor lamp upon the mineral composition of plants, 6:225

STEWART, W. D.: See also ARTHUR, JOHN M....

STILLWELL, O. G., nitrogenous fertilizer, 8:13

Storage effects: See Carbon dioxide effects; Seed storage; Temperature effects; etc.

Storage of seeds: See Seed storage

Stratification effects on germination: See Germination of seeds: stratification effects

Stunt disease of dahlia: distinct from aster yellows, 1:212

Sucrose: changes in chemically treated dormant potato tubers, 2:131, 580, 5:20 ethylene chlorohydrin effects, 4:513, 5:435

hydrolysis, 5:103

Sugar cane mosaic: precipitin reaction with tobacco mosaic, 3:532

Sugars: carbon dioxide effects on potato tubers, 7:113

changes, in leaves before frost, 5:207; in relation to respiratory rate, 5:213, 8:41

chemicals effects on dormant potato tubers, 5:213, 8:41

ethylene chlorohydrin effects on dormant gladiolus corms, **5:4**35

fructose, glucose determination in presence of pentoses, 10:441

in leaves during the night, 5:181

in potato tubers, 2:131

sulphur compounds effects on dormant potato tubers, 5:29

utilization by potato sprout, 2:97

Sulphate: changes in relation to respiratory rate of potato tubers, 8:41

deficiency effects on nitrate reduction by plants, 4:125

utilization by potato tubers in gluta-

thione synthesis, 9:233

Sulphur: effects on acidity of peats, 4:497 reduction by tissues. 4:00

Sulphur compounds effects on: dormant, lilacs, 5:52, 71; potato tubers, 3:309, 499, 5:29

enzymes, 5:29

glutathione in dormant potato tubers, 5:331

Sulphur dioxide: apparatus for studying effects on animals, plants, 9:161

in air at Yonkers, N. Y., 9:171, 10:183

Sulphur dioxide effects on: animals, 10:281 insects, 10:281

plants, **6:**455, **9:**171, 179, 371, **10:**155 soils, **9:**353

Sulphur fungicides: action, 3:13 adherence of particles, 3:521

classification, 3:509

dusted leaves and spores produce hydrogen sulphide, 3:13, 4:415

rôle of pentathionic acid, sulphuric acid, and hydrogen sulphide in fungicidal action, 2:389

toxicity, 2:392, 5:173; as influenced by particle size, 2:410, 3:509; compared to selenium, tellurium, 4:415; of dusts, 3:509; of water extracts, 2:409

Sulphur reduction: by potato and gladiolus juice inhibited by oxidase, 3:125

Sulphuric acid: effects on dormancy in seeds, See Dormancy in seeds . . .

effects on germination of seeds, See Germination of seeds . . .

fungicidal toxicity, 2:398

metabolism in dormant potato tubers as affected by ethylene chlorohydrin, 6:247

rôle in fungicidal action of sulphur, 2:389 Sulphydryl compounds: carbon dioxide effects on dormant potato tubers, 5:471

chemicals effects on dormant potato tuber juice, 3:499

ethylene chlorohydrin effects on gladiolus corms, 4:131

in fungous spores, 3:26

in plant tissue, 4:99; reduce sulphur, 3:125

See also Glutathione

Symphoricarpos racemosus seeds: afterripening, 6:91 dormancy, 6:01, 103 fungal invasion of coats, 6:103 germination, 6:01, 103 morphology, 6:103

Syringa vulgaris: chemicals effects on dormant woody tissues, 1:355, 365

ethyl mercaptan effects on dormancy, 5:52

ethylene chlorohydrin effects, 1:355, 4:513

indolebutyric acid produces roots, 10:461 methyl disulphide effects on dormancy, 5:71

Takadiastase: ethylene chlorohydrin effects, 5:44¹

potassium thiocyanate effects, 5:441

Takadiastase method for determination of starch, 6:129, 381

Talc: effects on rooting, 10:461

Tarsonemus pallidus: fumigation with naphthalene, 2:519

Tartaric acid: effects on plants, 7:95

Tellurium: toxicity compared to selenium, sulphur, 4:415

Temperature effects: bottom heat influences rooting of hibiscus treated with indolebutyric acid, 10:461

on absorption of growth substances by plants, 7:447

on callusing of apple cuttings and grafts, 2:351

on dormancy, See Dormancy . . .

on fruits and vegetables in carbon dioxide storage, 3:219

on germination, See Germination . . .

on lasting qualities of cut flowers, 2:196,

on plant growth, 2:445; treated with growth substances, 7:200

on sulphur dioxide injury to plants, 10:155

Tenebrio molitor: formic acid toxicity, 7:424
"Tergitol 7 penetrant" with β, β'-dichloroethyl ether: Japanese beetle larvae
control, 10:509

Tetranychus telarius: fumigation with naphthalene, 2:510

Thallium sulphate effects: on nitrification in soils, 5:289

on plant growth, 5:289

THATCHER, ROSCOE W. Address at dedication of Institute, 1:55

Thioacetamide: effects on dormant potato tubers, 5:62, 213

retards sprouting of potato tubers, 5:64 Thiocarbamide: See Thiourea

Thiocyanates: as fungicides, 7:333

as insecticides, 6:269, 7:29, 497

effects on guinea pigs, 7:497

effects on plants, 7:29

See also Potassium thiocyanate; Sodium thiocyanate

Thiosemicarbazide: effects on dormant potato tubers, 5:29

Thiourea effects: on bud inhibition and apical dominance of potato, 1:154

on dormant potato tubers, 1:50, 160, 2:417, 5:83, 213; when disinfected, 9:397

on enzyme activities in potatoes, 2:417 on glutathione, 5:331

on starch content of potatoes, 2:581

on sucrose content of potatoes, 2:581, 5:213

prevents browning of plant tissues and juices, 7:55

toxicity to animals, 7:60

THOMPSON, H. JEANNE: See HARRIS, STAN-TON A., and H. JEANNE THOMPSON

THORNTON, NORWOOD C. Carbon dioxide storage. III. The influence of carbon dioxide on the oxygen uptake by fruits and vegetables, 5:371

Carbon dioxide storage. IV. The influence of carbon dioxide on the acidity of plant tissue, 5:403

Carbon dioxide storage. V. Breaking the dormancy of potato tubers, 5:471

Carbon dioxide storage. VI. Lowering the acidity of fungal hyphae by treatment with carbonic acid, 6:395

Carbon dioxide storage. VII. Changes in flower color as evidence of the effectiveness of carbon dioxide in reducing the acidity of plant tissue, 6:403

Carbon dioxide storage. VIII. Chemical changes in potato tubers resulting from exposure to carbon dioxide, 7:113

Carbon dioxide storage. IX. Germination of lettuce seeds at high tempera-

lar crystalline bodies, 8:333, 413 tures in both light and darkness, succulence a factor in plant suscepti-8:25 Carbon dioxide storage. X. The effect of bility. 7:10 carbon dioxide on the ascorbic acid content, respiration, and pH of asparagus tissue, 9:137 Carbon dioxide storage. XIII. Relationship of oxygen to carbon dioxide in breaking dormancy of potato tubers, 10:201 Development of dormancy in lily bulbs, The effect of carbon dioxide on fruits and vegetables in storage, 3:219 Extraction and determination of vitamin C in plant tissue, 9:273 Factors influencing germination and development of dormancy in cocklebur seeds, 7:477 Oxygen regulates the dormancy of the potato, 10:339 The use of carbon dioxid for prolonging the life of cut flowers, with special reference to roses, 2:535 Thrips tabaci: fumigation with naphthalene, 2:510 Tilia: after-ripening, dormancy, germination of seeds, 6:69 4:297 Titration curves: organic acids, 1:286 plant extracts, 1:282 Tobacco: use in testing growth substances, Tobacco mosaic: accuracy in quantitative work with virus, 1:423 comparison with, bean mosaic on bean

varieties, 2:556; ring spot of tobacco

effects, on chloroplast pigments, 2:244;

intracellular bodies, in detached leaves,

local lesions, 1:504; as a method for

local lesions, on inoculated bean leaves,

1:347; possibly related to Stanley's

statistical

in bean varieties, 2:557

on Nicotiana, 5:129

inoculation, 1:423, 504, 521

crystals, 8:333, 413

measuring infectivity,

2:549; on Nicotiana, 3:163

precipitin reaction specificity, 3:529

slugs probably do not transmit, 1:353

Stanley's crystals related to intracellu-

study, 6:437, 9:41, 49

serologic reactions, 3:520

susceptible varieties of beans, 2:549 symptoms, 4:323; in Nicotiana, 5:129; in Nicotiana tabacum recovered from ring spot of tobacco, 4:395 ultra-violet photography, 1:407 virus activity, as affected by various factors, 7:19; as affected by temperature, 1:431, 438; in presence of suspended norite and talc, 3:143; when precipitated by lead acetate, 3:131 virus concentration, measured by lesions produced, 7:37 virus crystallization, 3:142 virus inactivated by, ascorbic acid, 8:335, 445; peroxide, 8:445; ultraviolet, 2:155 virus increase, in detached leaves, 1:347; in plant, 2:563 virus infectivity, as affected by enzymes, 3:147; estimated, by incomplete block replications, 9:41, 49; by local lesion method, 1:504, 2:549, 3:163, **6:**437, **7:**37, **9:**41, 49 virus movement in Nicotiana tabacum, virus of nitrogenous character, 3:144, virus purification, 3:131, 7:19 virus separation, 1:479 virus spread in plant, 1:436 virus storage, 1:430, 438 virus transfer from bean to tobacco, 2:552 Tomato mosaic: attempt to cultivate an organism, 1:146 filtration and inoculation experiments, 1:329 organism, 1:100 Toxicity of fungicides: 10:329 as related to the periodic system of the elements in compounds, 6:479 precision of determination, 4:233 test method, 2:380 theory of testing, 10:329 toxicity surface, 5:173 See also Fungicides; name of fungicide Toxicity to animals: sulphur dioxide, 10:281 thiourea, 7:60 Toxicity to goldfish: chlorinated water, 6:39 Toxicity to guinea pigs: thiocyanogen compounds, 7:499

Toxicity to insects: acetic acid, formic acid, 7:424

killer-wasp paralyzes cicadas, 7:421

See also Insecticides; name of insecticide

Toxicity to plants: chlorinated water, 6:39 ethylene, 4:177

ethylene chlorohydrin decreased by β-glucoside formation in plant tissues, 9:213, 425

hydrogen sulphide, 8:189

illuminating gas, 4:155, 6:1

mercury and mercury compounds, 6:167

naphthalene fumigation, 2:512

sulphur dioxide, **6:**455, **10:**155

thiocyanogen compounds, 7:29

Toxicity surface of fungicides, 5:173

Tradescantia fluminensis: anatomical changes produced by growth substances, 9:439

Trailing arbutus: propagation, 8:81

Translocation: bases for calculations in measuring changes in leaves during the night, 5:181

changes in leaves during the night, 4:65

from leaves before frost, 5:297 movement of mosaic virus, 4:297

reversal of direction in abnormally oriented stems, 6:297

studied through use of growth substances, 9:500, 507, 508

twin-leaf method of studying changes in leaves, 2:592, 4:65, 5:181, 297

Transpiration: effects on absorption of growth substances, 7:447

infra-red, light, temperature effects on tobacco, 5:483

Transport: indole compounds applied to corms detected in shoots and roots, 10:5

Tree peony: seedling production, **5:**451

Trichloroethylene: effects on potato tubers, 1:63

Triorthocresyl phosphate: effects on insect nerves, 6:213

Triticum aestivum: yarovization, 8:237

Tropisms: artificial orientation effects,

as a method for determining activity of growth substances, **9:2**99, 498

growth substances effects, **9:**299, **10:**363, 481

See also Geotropism

Tryptophane, Irradiated: effects on plants, 10:107

Tuber: rôle of mother tuber in growth of potato plant, 2:77

Tulipa: illuminating gas effects, 4:155

Turkish tobacco: See Nicotiana tabacum

Twin-leaf method of studying changes in leaves, 2:592, 4:65, 5:181, 297

Ulmus americana: germination, storage of seeds, 10:221

Ultra-violet: filters for transmission, 2:146 Ultra-violet effects: irradiated β-naphthoylacetonitrile effects on plants, 10:100

irradiated cinnamic acid produces epinasty in plants, 10:197

irradiated nitrocinnamic acid effects on plants, 10:197

irradiated tryptophane effects on plants, 10:107

on mineral composition of tomato plants, 9:105

on plants, 6:225

on pyrethrum, 4:107

on red pigment production in apples, 4:1

on tobacco infected by tobacco mosaic, 5:139

on tobacco mosaic virus, 2:143

on tomato, 2:143

on vitamin D, 3:245

Vaccinium macrocarpon: cranberry false blossom disease and its insect vector,

Vallisneria spiralis: ecological and physiological studies, 4:425

Rhizoctonia disease, 1:383

sea-water tolerance, 6:303

Vegetable seeds: See Germination of seeds; Seed storage

Vegetables: thiourea prevents browning, 7:55

Viburnum: after-ripening, dormancy, germination, seedling production, 9:79

VINSON, C. G., and A. W. PETRE. Mosaic disease of tobacco. I. Progress in freeing the virus of accompanying solids, 1:479

Mosaic disease of tobacco. II. Activity

of the virus precipitated by lead acetate, 3:131

Vinson, Carl G.: See also Lojkin, Mary...

Viruses: device for lighting precipitin tests, **6:**165

method of determining concentration, See Local lesion method . . .

serum reactions, 6:407

ultra-violet light photography, 1:407

See also Curly top of beets; False blossom of cranberry; Leaf roll; Mosaic diseases; Oakleaf; Ring spot; Stunt disease of dahlia; Witches' broom; Yellows diseases

Vitality of seeds: See Seeds: vitality

Vitamin C: See Ascorbic acid

Vitamin D: ultra-violet effects, 3:245

Vitis: after-ripening, dormancy, germination of seeds, 9:7

Vitis labruscana: ethyl mercaptan breaks dormancy, 5:52

Volatile chemicals: produce epinasty, 10:191 Volatile products from plant tissues: produce epinasty, 7:97, 341, 8:99, 9:431, 10:191

Walnut, Black: seedling production, 8:1

Wandering Jew: anatomical changes produced by growth substances, 9:439

Water effects: on carbon dioxide treatments of strawberries and vegetables in storage, 3:229

on cut roses, 2:545

on dormant seeds, See Dormancy in seeds . . .

on germination, See Germination of seeds . . .

See also Humidity effects; Moisture effects

WAY, KATHARINE, and JOHN M. ARTHUR. Spectrographic determination of calcium in plant ashes, 7:103

WEEDON, F. R., ALBERT HARTZELL, and CARL SETTERSTROM. Effects on animals of prolonged exposure to sulphur dioxide, 10:281

Weiss, Freeman. Seed germination in the gray birch, Betula populifolia, 1:272

Wheat: yarovization, 8:237

White heart of lettuce: See Aster yellows

WILCOXON, FRANK. The determination of pyrethrin I, 8:175

Preparation of plant growth-promoting substances. I. 1-naphthaleneglyoxalic ethyl ester; 1-naphthaleneglycollic acid; 1-naphthaleneacetic acid, 8:467

WILCOXON, FRANK, and ALBERT HARTZELL. Experiments on greenhouse fumigation with β , β' -dichloroethyl ether, 10:47

Further experiments on organic thiocyanates as insecticides, 7:29

Some factors affecting the efficiency of contact insecticides. I. Surface forces as related to wetting and tracheal penetration, 3:1

Some factors affecting the efficiency of contact insecticides. III. Further chemical and toxicological studies of pyrethrum, 5:115

WILCOXON, FRANK, ALBERT HARTZELL, and W. J. YOUDEN. Greenhouse fumigations with naphthalene solutions, 5:461

WILCOXON, FRANK, and S. E. A. McCal-LAN. Fungicidal action of organic thiocyanates, resorcinol derivatives, and other organic compounds, 7:333

The fungicidal action of sulphur: I. The alleged rôle of pentathionic acid, 2:380

The fungicidal action of sulphur. III.

Physical factors affecting the efficiency of dusts, 3:509

The fungicidal action of sulphur. IV. Comparative toxicity of sulphur, selenium, and tellurium, 4:415

Theoretical principles underlying laboratory toxicity tests of fungicides, 10:329

The weathering of Bordeaux mixture, 9:149

WILCOXON, FRANK: See also GUTHRIE, JOHN D. . . . ; HARTZELL, ALBERT . . . ; McCallan, S. E. A. . . . ; Zimmerman, P. W. . . .

Witches' broom of potato: distinct from aster yellows, 3:109

ultra-violet photography, 1:407

Woods, Mark W. Cellular changes in ringspot, 6:51

- Intracellular bodies associated with ringspot, 5:419
- Wound cork: of potato tubers, 10:339
 permeability in relation to dormancy,
 10:339
- *Xanthium:* dormancy, germination of seeds, **2:**304, **7:**477
- Xanthophyll: environment effects, 2:220
- X-ray diffraction: patterns of cellulose particles and interpretations of data, 6:315
 - studies of cellulose orientation, 9:239
- X-ray diffraction analysis: corroborates microscopic analysis of plant membranes, 9:239
 - of cell membranes, 9:239
 - of cellulose, 8:389
 - of cotton fiber wall structure, 4:273
 - of indole and naphthalene growth substances, 9:500
 - of indolebutyric acid recovered from treated tissues, 9:508
 - of plant constituents, 9:381
- Yarovization: oats, wheat, 8:237
- Yeast cells: produce hydrogen selenide, hydrogen sulphide, hydrogen telluride, 4:422
- Yellows diseases: See Aster yellows; Celery yellows; Eupatorium yellows; Peach yellows
- YOUDEN, W. J. Dilution curve of tobaccomosaic virus, 9:49
 - A nomogram for use in connection with Gutzeit arsenic determinations on apples, 3:363
 - Statistical analysis of seed germination data through the use of the Chisquare test, 4:219
 - Use of incomplete block replications in estimating tobacco-mosaic virus, 9:
- YOUDEN, W. J., and HELEN PURDY BEALE.
 A statistical study of the local lesion
 method for estimating tobacco mosaic virus, 6:437
- YOUDEN, W. J., HELEN PURDY BEALE, and JOHN D. GUTHRIE. Relation of virus concentration to the number of lesions produced, 7:37

- YOUDEN, W. J., and F. E. DENNY. Factors influencing the pH equilibrium known as the isoelectric point of plant tissue, 1:278
- YOUDEN, W. J., and I. D. DOBROSCKY. A capillary glass electrode, 3:347
- YOUDEN, W. J., and A. MEHLICH. Selection of efficient methods for soil sampling, 9:59
- YOUDEN, W. J., and P. W. ZIMMERMAN. Field trials with fibre pots, 8:317
- YOUDEN, W. J.: See also DENNY, F. E. . . . ; HARTZELL, ALBERT . . . ; McCool, M. M. . . . ; WILCOXON, FRANK . . .
- ZIMMERMAN, P. W. Anaesthetic properties of carbon monoxide and other gases in relation to plants, insects, and centipedes, 7:147
 - Oxygen requirements for root growth of cuttings in water, 2:616
- ZIMMERMAN, P. W., and ROBERT O. BERG. Effects of chlorinated water on land plants, aquatic plants, and goldfish, 6:30
- ZIMMERMAN, P. W., and MARY H. Con-NARD. Reversal of direction of translocation of solutes in stems, 6:207
- ZIMMERMAN, P. W., and WILLIAM CROCKER.
 Plant injury caused by vapors of
 mercury and compounds of mercury,
 6:167
 - Toxicity of air containing sulphur dioxide gas, 6:455
- ZIMMERMAN, P. W., WILLIAM CROCKER, and A. E. HITCHCOCK. The effect of carbon monoxide on plants, 5:195
 - Initiation and stimulation of roots from exposure of plants to carbon monoxide gas, 5:1
- ZIMMERMAN, P. W., and A. E. HITCHCOCK.
 Activation of cinnamic acid by
 ultra-violet light and the physiological activity of its emanations, 10:197
 - The combined effect of light and gravity on the response of plants to growth substances, 9:455
 - Comparative effectiveness of acids, esters, and salts as growth substances and methods of evaluating them, 8:337

- Effect of light and dark on responses of plants to growth substances, 8:217
- Experiments with vapors and solutions of growth substances, 10:481
- Initiation and stimulation of adventitious roots caused by unsaturated hydrocarbon gases, 5:351
- Modified storage organs in Helianthus tuberosus, 10:1
- Response of gladiolus corms to growth substances, 10:5
- The response of roots to "root-forming" substances, 7:439
- Root formation and flowering of Dahlia cuttings when subjected to different day lengths, 1:467
- Tropic responses of leafy plants induced by application of growth substances, 9:299
- Tuberization of artichokes regulated by capping stem tips with black cloth, 8:311

- Vegetative propagation of holly, 2:205
- ZIMMERMAN, P. W., A. E. HITCHCOCK, and WILLIAM CROCKER. The effect of ethylene and illuminating gas on roses, 3:459
 - The movement of gases into and through plants, 3:313
- ZIMMERMAN, P. W., A. E. HITCHCOCK, and FRANK WILCOXON. Responses of plants to growth substances applied as solutions and as vapors, 10:363
- Several esters as plant hormones, 8:105
 ZIMMERMAN, P. W., and FRANK WILCOXON.
 Several chemical growth substances
 which cause initiation of roots and
 other responses in plants, 7:209
- ZIMMERMAN, P. W.: See also CONNARD, MARY H....; CROCKER, WIL-LIAM...; HITCHCOCK, A. E....; SETTERSTROM, CARL...; YOUDEN, W. J....

ADDITIONAL ERRATA

- Vol. 3, page 510, TABLE I, place "Orchard Brand Dritomic Sulphur, General Chemical Co., New York, N.Y." in "Spray Suspension" classification instead of "Modified Dust"
- Vol. 4, page 156, TABLE I, line 2 in body of table, "eximum Nichols" should read "eximium Nichols."
 - page 276, FIGURE 1, "θ" should read "2θ"
 - page 425, line 6, "Potamogaton" should read "Potamogeton"
- Vol. 5, page 1, insert the footnote to read "This article was preprinted December 1, 1932."
- Vol. 6, page iv of TABLE OF CONTENTS, line 1, "critic" should read "citric"
- Vol. 7, page 88, line 8 from bottom, "proprionic" should read "propionic"
 - page 228, entry 8 in LITERATURE CITED should read "LAIBACH, F., A. MÜLLER, und W. Schäfer."
 - page 228, entry 9 in LITERATURE CITED should read "MAYER, FRITZ, und TRUDI OPPENHEIMER. Über Naphthyl-essigsäuren. (1. Abhandl.)"
 - page 220, entry 13 in LITERATURE CITED should read "Wolfram, Arthur, Ludwig Schörnig, and Emil Hausdörfer."
 - page 334, line 3, "Rhem." should read "Rehm."
- Vol. 8, page 152, line 8, "Rhem." should read "Rehm."
 - page 476, line 9, "were" should read "was"
 - page 507, line 8 left column, "mercury vapor" should read "mercury are"
 - page 507, line 2 right column, "tobacco" should read "tomato"
- Vol. 9, page 250, line 2, "Rhem." should read "Rehm."
 - page 328, entry 28 in LITERATURE CITED should read "SCHLENKER, GERHARD, und Christine Rosenthal."
- Vol. 10, page 127, insert the footnote to read "This article was preprinted March 1, 1939." page 337, line 3 from bottom, "Rhem." should read "Rehm."
 - page 496, TABLE IV, line 4 from bottom, "*" should read "**"
- "Botrytis paeoniae Oud." cited in the following papers -vol. 6: 479 500. 1934; vol. 7: 333 339. 1935; vol. 8: 151-165. 1936; vol. 9: 249 263. 1938 should be identified as "Botrytis sp. (cinerea type) isolated from peony"